Designing the Electricity Market with Energy Storage Devices

  • Tatiana A. VASKOVSKAYA
  • Boris A. KLUS
Keywords: energy storage, optimal power flow, locational marginal prices, power system economics

Abstract

The development of energy storage systems allows us to consider their usage for load profile leveling during operational planning on electricity markets. The paper proposes and analyses an application of an energy storage model to the electricity market in Russia with the focus on the day ahead market. We consider bidding, energy storage constraints for an optimal power flow problem, and locational marginal pricing. We show that the largest effect for the market and for the energy storage system would be gained by integration of the energy storage model into the market’s optimization models. The proposed theory has been tested on the optimal power flow model of the day ahead market in Russia of 10000-node Unified Energy System. It is shown that energy storage systems are in demand with a wide range of efficiencies and cycle costs.

Author Biographies

Tatiana A. VASKOVSKAYA

(Stock Company «Administrator of the wholesale electricity market trading system», Moscow, Russia) — Head of the analytical systems development Department, Dr. Sci. (Eng.)

Boris A. KLUS

(Stock Company «Administrator of the wholesale electricity market trading system», Moscow, Russia) — Deputy Head of the analytical systems development Department (Eng.)

References

1. Ali S.H., Svobodova K., Everingham J.-A., Altingoz M. Climate Policy Paralysis in Australia: Energy Security, Energy Poverty and Jobs. — IEEE Power and Energy Magazine, 2014, vol. 13, №18, pp. 1—16.

2. Концепция развития рынка систем хранения электро­энергии в Российской Федерации, 2017, 43с. [Электрон. ресурс] URL: https://minenergo.gov.ru/view-pdf/9013/74739 (Дата обра­щения 29.10.2020).

3. Electric Storage Participation in Markets Operated by Regional Transmission Organizations and Independent System Operators: 2018-03708. — Federal Register. 2018, vol. 83, № 44, pp. 9580-9633.

4. Регламент проведения расчетов выбора состава генери­рующего оборудования. [Электрон. ресурс] URL: https://www.np-sr.ru/ru/regulation/joining/reglaments/index.htm (Дата обращения 29.10.2020).

5. Регламент проведения конкурентного отбора ценовых заявок на сутки вперед [Электрон. ресурс] URL: https://www.np-sr.ru/ru/regulation/joining/reglaments/index.htm (Дата обращения 29.10.2020).

6. Регламент проведения конкурентного отбора заявок для балансирования системы [Электрон. ресурс] URL: https://www.np-sr.ru/ru/regulation/joining/reglaments/index.htm (Дата обращения 29.10.2020).

7. Телятник А.Г., Васьковская Т.А. Ускорение метода после­довательного квадратичного программирования в задаче опти­мизации установившихся режимов ЭЭС. — Известия Россий­ской Академии Наук. Энергетика. 2019, № 4. c. 3-15.

8. Зангвилл У.И. Нелинейное программирование. Единый подход. М.: Советское радио, 1973, 312с.

9. Зоркальцев В.И., Хамисов О.В. Равновесные модели в экономике и энергетике. Новосибирск: Наука, 2006, 221 с.

10. Motto A.L. Galiana F.D, Conejo A.J, Huneault M. On Walrasian Equilibrium for Pool-Based Electricity Markets . — IEEE Power Engineering Review, 2002, vol. 22, № 6, p. 58.

11. Стофт С. Экономика энергосистем. Введение в проек­тирование рынков электроэнергии. М.: Мир, 2006, 623 с.

12. Nguyen N.T.A. et al. Optimal Power Flow with energy storage systems: Single-period model vs. multi-period mode. — 2015 IEEE Eindhoven PowerTech, PowerTech 2015.

13. Jabr R.A., Karaki S., Korbane J.A. Robust Multi-Period OPF with Storage and Renewables - IEEE Transactions on Power Systems. 2015. Vol. 30, № 5. P. 2790-2799.

14. Krishnamurthy D. et al. Energy Storage Arbitrage Under Day-Ahead and Real-Time Price Uncertainty Reduced number of DA price forecast scenarios // IEEE Transactions on Power Systems. 2017, Vol. 33, № 1, pp. 84-93.

15. Zhao J., Zheng T., Litvinov E. A Multi-Period Market Design for Markets with Intertemporal Constraints // arXiv e-prints. 2018. pp. 1-12.

16. Castillo A., Gayme D.F. Profit Maximizing Storage Integration in AC Power Networks. — Energy Markets and Responsive Grids. Modeling, Control, and Optimization. Springer, 2018, pp. 251-280.

17. Xu B. et al. A Lagrangian Policy for Optimal Energy Storage Control. — Proceedings of the American Control Conference, 2020. pp. 224-230.

18. Taylor J.A. Financial storage rights. — IEEE Transactions on Power Systems, 2015, vol. 30, № 2, pp. 997—1005.

19. Mucoz-Blvarez D., Bitar E. Financial storage rights in electric power networks. — Journal of Regulatory Economics, 2017, vol. 52, № 1, pp. 1—23.

20. Tan Z.F. et al. A two-stage scheduling optimization model and solution algorithm for wind power and energy storage system considering uncertainty and demand response. —International Journal of Electrical Power and Energy Systems, 2014, vol. 63, pp. 1057—1069.

21. Hu Z. Energy Storage for Power System. Planning and Operation. Wiley, 2020. 232 p.

22. Hua B. et al. Pricing in Multi-Interval Real-Time Markets. —IEEE Transactions on Power Systems. IEEE, 2019. vol. 34, № 4, pp. 2696—2705.

23. Васьковская Т.А. Вопросы формирования равновесных узловых цен оптового рынка электроэнергии. — Электрические станции. 2017, № 1, c.25—32.

24. Vaskovskaya T., Guha Thakurta P., Bialek J. Contribution of transmission and voltage constraints to the formation of locational marginal prices. — International Journal of Electrical Power & Energy Systems, 2018, vol. 101, pp. 491—499.

25. Vaskovskaya T.A. Locational Marginal Pricing in Multi-Period Power Markets. — Energy Systems Research. 2019, vol. 2, № 2, pp. 28—40.

26. Отчет АО «АТС» о равновесных ценах в наиболее круп­ных узлах расчетной модели. [Электрон. ресурс] URL: http: //www. atsenergo. ru/nreport?rname=big_nodes_prices_pub (Дата обращения 29.10.2020).

27. Отчет АО «АТС» о торговом графике для режимных ге­нерирующих единиц. [Электрон. ресурс] URL: https://www.atsenergo.ru/nreport?rname=carana_sell_units (Дата обращения 29.10.2020).

28. Choo C., Nair N., Chakrabarti B. Impacts of Loop Flow on Electricity Market Design. — 2006 International Conference on Power System Technology. IEEE, 2006, pp. 1—8.

#

1. Ali S.H., Svobodova K., Everingham J.-A., Altingoz M. Climate Policy Paralysis in Australia: Energy Security, Energy Poverty and Jobs. — IEEE Power and Energy Magazine, 2014, vol. 13, №18, pp. 1—16.

2. Concept of development of the electricity storage systems market in the Russian Federation, 2017, 43 p. [Electron. Resource] URL: https://minenergo.gov.ru/view-pdf/9013/74739 (Date of appeal 29.10.2020).

3. Electric Storage Participation in Markets Operated by Regional Transmission Organizations and Independent System Operators: 2018—03708. — Federal Register. 2018, vol. 83, № 44, pp. 9580—9633.

4. Regulations for calculating the selection of generating equipment [Electron. Resource] URL: https://www.np-sr.ru/ru/ regulation/joining/reglaments/index.htm (Date of appeal 29.10.2020)

5. Regulations for competitive selection of price orders for the day ahead [Electron. Resource] URL: https://www.np- sr.ru/ru/regulation/joining/reglaments/index.htm (Date of appeal 29.10.2020).

6. Regulations for competitive selection of bids for balancing of the system [Electron. Resource] URL: https://www.np-sr.ru/ru/regulation/joining/reglaments/index.htm (Date of appeal 29.10.2020).

7. Telyatnik A.G., Vaskovskaya T.A. Izvestiya Rossiyskoy Academii Nauk. Energetika — in Russ. (Proceedings of the Russian Academy of Sciences. Energetika), 2019, No. 4, pp. 3—15.

8. Zangvill U.I. Nelinejnoe programmirovanie. Ediny podhod (Nonlinear programming. Unified approach). M.: Sovetskoe radio, 1973, 312 p.

9. Zorkaltsev V.I., Hamisov O.V. Ravnovesnye modeli v ekonomike i energetike (Equilibrium models in Economics and Energy). Novosibirsk: Nauka, 2006, 221 p.

10. Motto A.L. Galiana F.D, Conejo A.J, Huneault M. On Walrasian Equilibrium for Pool-Based Electricity Markets . — IEEE Power Engineering Review, 2002, vol. 22, № 6, p. 58.

11. Stoft S. Ekonomika energosistem. Vvedenie v proektirovanie rynkov elektroenergii (Economy of power systems. Introduction to power market design). M.: Mir, 2006, 623 p.

12 Nguyen N.T.A. et al. Optimal Power Flow with energy storage systems: Single-period model vs. multi-period model. - 2015 IEEE Eindhoven PowerTech, PowerTech 2015.

13. Jabr R.A., Karaki S., Korbane J.A. Robust Multi-Period OPF with Storage and Renewables. — IEEE Transactions on Power Systems, 2015, vol. 30, № 5, pp. 2790-2799.

14. Krishnamurthy D. et al. Energy Storage Arbitrage Under Day-Ahead and Real-Time Price Uncertainty Reduced number of DA price forecast scenarios. - IEEE Transactions on Power Systems. 2017, vol. 33, № 1, pp. 84-93.

15. Zhao J., Zheng T., Litvinov E. A Multi-Period Market Design for Markets with Intertemporal Constraints // arXiv e-prints. 2018. pp. 1-12.

16. Castillo A., Gayme D.F. Profit Maximizing Storage Integration in AC Power Networks. — Energy Markets and Responsive Grids. Modeling, Control, and Optimization. Springer, 2018, pp. 251-280.

17. Xu B. et al. A Lagrangian Policy for Optimal Energy Storage Control. — Proceedings of the American Control Conference, 2020. pp. 224-230.

18. Taylor J.A. Financial storage rights. — IEEE Transactions on Power Systems, 2015, vol. 30, № 2, pp. 997-1005.

19. Mucoz-Elvarez D., Bitar E. Financial storage rights in electric power networks. — Journal of Regulatory Economics, 2017, vol. 52, № 1, pp. 1-23.

20. Tan Z.F. et al. A two-stage scheduling optimization model and solution algorithm for wind power and energy storage system considering uncertainty and demand response. - International Journal of Electrical Power and Energy Systems, 2014, vol. 63, pp. 1057-1069.

21. Hu Z. Energy Storage for Power System. Planning and Operation. Wiley, 2020. 232 p.

22. Hua B. et al. Pricing in Multi-Interval Real-Time Markets. — IEEE Transactions on Power Systems. IEEE, 2019. vol. 34, № 4, pp. 2696-2705.

23. Vaskovskaya T.A. Elektricheskie stantsii — in Russ. (Power Plants). 2017, No 1, pp. 25-32.

24. Vaskovskaya T., Guha Thakurta P., Bialek J. Contribution of transmission and voltage constraints to the formation of locational marginal prices. — International Journal of Electrical Power & Energy Systems, 2018, vol. 101, pp. 491-499.

25. Vaskovskaya T.A. Locational Marginal Pricing in Multi-Period Power Markets. — Energy Systems Research. 2019, vol. 2, № 2, pp. 28-40.

26. The Report of SCATS" on equilibrium prices in the largest nodes of the calculation model [Electron. Resource] URL: http://www.atsenergo.ru/nreport?rname=big_nodes_prices_pub (Date of appeal 29.10.2020).

27. The Report of SC «ATS» on the chart for the regime of cash-generating units [Electron. Resource] URL: https://www.atsenergo.ru/nreport?rname=carana_sell_units (Date of appeal 29.10.2020).

28. Choo C., Nair N., Chakrabarti B. Impacts of Loop Flow on Electricity Market Design. — 2006 International Conference on Power System Technology. IEEE, 2006, pp. 1-8.

Published
2020-10-19
Section
Article