Исследование влияния параметров системы управления на качество входного тока трехфазного корректора мощности

  • Дмитрий А. Сорокин
  • Сергей И. Вольский
  • Ярослав Драгун
Ключевые слова: трехфазный корректор мощности, система управления, коэффициент усилителей ошибки, коэффициент гармонических составляющих

Аннотация

Предложена система управления трехфазным корректором коэффициента мощности. Проведено исследование рассматриваемой системы управления и получены выражения для расчета допустимых значений коэффициентов усилителей ошибок. Исследовано влияние коэффициентов усилителей ошибок системы управления на качество потребляемого фазного тока устройства. При заданном значении коэффициента мощности получены зависимости коэффициента гармонических составляющих входного фазного тока трехфазного корректора мощности от сочетания коэффициентов усилителей ошибок. Показаны условия, при которых коэффициент гармонических составляющих входного фазного тока принимает минимальное значение. Статья представляет интерес для инженеров силовой электроники, занимающихся вопросами разработки трехфазного корректора коэффициента мощности и проектированием устройств, требующих повышенного качества электрической энергии.

Биографии авторов

Дмитрий А. Сорокин

кандидат техн. наук, инженер-конструктор ООО "Трансконвертер", Москва, Россия.

Сергей И. Вольский

доктор техн. наук, профессор кафедры "Электроэнергетика, электромеханика и биотехнические системы", Московский авиационный институт (национальный исследовательский университет), Москва, Россия.

Ярослав Драгун

аспирант факультета электротехники, инженер‑разработчик Регионального инновационного центра электротехники, Университет Западной Богемии, Плзень, Чешская республика.

Литература

1. Wang L., Wu Q. H., Tang W. H., Yu Z. Y., Ma W. CCM-DCM average current control for both continuous and discontinuous conduction modes boost PFC converters. – IEEE Electrical Power and Energy Conference (EPEC), 2017, pp. 31–36.

2. Sorokin D., Volskiy S. Сomparative analysis of three-phase PFC rectifier. Electronics and Electrical Equipment for Transport (EET), 2018, vol. 9, pp. 13–21.

3. Meleshin V. I., Ovchinnikov D. A. Control of transistor energy converters. М.: Technosphere, 2011, 411 p.

4. Zinoviev G. С. Power electronics. М.: Yureit, 2015, 668 p.

5. Huber L. Performance comparison of three-step and six-step PWM in average-current-controlled three-phase six-switch boost PFC rectifier. – IEEE Transactions on Power Electronics, 2015, vol. 31, pp. 264–272.

6. Kolar J. W., Friedli T. The essence of three-phase PFC rectifier systems. – IEEE Transactions on Power Electronics, 2013, vol. 28, No.1, pp. 176–198.

7. Chaplygin E. E., Vo min Tien, Nguyen Hoang An. Vienne-rectifier-three-phase power factor corrector. – Power electronics, 2006, No. 1, pp. 20–24.

8. Krasnov I. Yu., Cheremisin V. N. Design of an active power factor corrector and simulation of its operation. – Proceedings of the Tomsk Polytechnic University, 2009, No. 4, pp. 92–97.

9. Dmitriev B. F., Galushin S. Ya. Topologies of power factor correctors in Autonomous power supply systems. – Marine Bulletin, 2013, No.1(10), pp. 37–40.

10. Wang L., Wu Q. H., Tang W. H., Yu Z. Y., Ma W. CCM-DCM average current control for both continuous and discontinuous conduction modes boost PFC converters. – IEEE Electrical Power and Energy Conference (EPEC2017), 2017, pp. 1–6.

11. Huber L. Performance Comparison of Three-Step and Six-Step PWM in Average-Current-Controlled Three-Phase Six-Switch Boost PFC Rectifier. – IEEE Transactions on Power Electronics, 2016, vol.31, pp.7264–7272.

12. Bachurin P. A., Geist A. V., Korobkov D. V., Makarov D. V., Reshetnikov A. N., Kharitonov S. A. Systems for generating direct current electrical energy based on a magnetoelectric generator and an active rectifier. – Scientific Bulletin of Novosibirsk state technical University, 2015, No.2 (59), pp. 43–58.

13. Makarov S. N., Stephen R. L., Bitar J. Practical Electrical Engineering. Washington, USA: Worcester Polytechnic Institute, 2016, 986 p.

14. Alencar F. de Souza, Denis C. Pereira, Fernando L. Tofoli. Comparison of Control Techniques Used in Power Factor Correction Rectifiers. – 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronic Conference (COBEP/SPEC), Fortaleza, 2015, pp. 1–6.

15. Najafi E., Vahedi A., Mahanfar A., Yatim A. H. M. A new controlling method based on peak current mode (PCM) for PFC. – 2008 IEEE 2nd International Power and Energy Conference, 2008, pp.1103-1107.

16. Gegner J. P., Lee C. Q. Linear peak current mode control: a simple active power factor correction control technique for continuous conduction mode. – PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, 1996, pp.196–202.

17. Belov G. A., Serebryannikov A. V. Distortion of the input current of the power factor corrector with a two-circuit control system. – Electricity, 2010, No. 8, pp. 42–51.

18. Yeong-Jun Choi, Kim Rae-Young, Tae-Jin Kim. A novel active discontinuous PWM control strategy for high efficiency partial switching predictive current-mode control PFC converter. – 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), 2017, pp.236–241.

19. Sorokin D. A., Volskiy S. I. Mathematical model of the three-phase AC power converter with bipolar unbalanced load. – Practical power electronics, 2019, vol. 74, pp. 2–7.

20. Skorokhod Y., Sorokin D., Volskiy S. Power factor corrector for bipolar unbalanced load and asymmetrical three-phase power supply. – PCIM2020, Nurnberg, 2020, pp. 1079–1085.

21. Sorokin D. A., Volskiy S. I. Mathematical model of three-phase power corrector with improved efficiency. – Electricity, 2019, No. 5, pp. 58–66.

Опубликован
2020-10-05
Раздел
Статьи