The Use of Concentrated Windings for High-Power Synchronous Wind Generators

  • Viktor N. ANTIPOV
  • Andrey D. GROZOV
  • Anna V. IVANOVA
Keywords: wind generators, harmonic composition, winding coefficient, torque pulsations, concentrated windings

Abstract

Low-power machines were commonly considered as the main application field of concentrated windings. However, a lot of paper have recently been published, which address both the theory of these windings and specific cases of their application for large synchronous machines. The article presents an analysis of the parameters of concentrated windings having various configurations intended for use in high-power gear and gearless wind generators. In assessing the winding, not only the high winding factor value was taken into account, but also the star of slot EMFs, harmonic spectra of the MMFs and EMFs, the cogging torque component and torque pulsation under load, as well as emerging losses. It is shown that the well-known advantages of concentrated windings over distributed windings can be fully realized by choosing the appropriated numbers of slots and poles.

Author Biographies

Viktor N. ANTIPOV

(Russian Academy of Sciences (RAS), Institute of Silicate Chemistry named I.V.

Grebenshchikov (ISCh), St. Petersburg, Russia) — Leading Scientist, Dr. Sci. (Eng.)

Andrey D. GROZOV

(RAS, ISCh, St. Petersburg, Russia) — Scientist

Anna V. IVANOVA

(RAS, ISCh, St. Petersburg, Russia) — Senior Scientist, Cand. Sci. (Eng.)

References

1. Wrobеl R., Mellor P.H. Design consideration оГ a direct drive brushless machine with concentrated windings. — IEEE Trans. on Energy conversion, 2007, vol. 23, No. 1. pp. 1-8. DOI: 10.1109/TEC.2007.905073.

2. Reichert R.K. PM-motors with concentrated non overlapping windings. Some Characteristics. Proc. of the XVI Intern. Conf. on Electrical Machines (ICEM 2004), paper 541.

3. Nuscheler R. Comparison of permanent magnet synchronous machines with distributed and concentrated windings. — Proc. of the XVII Intern. Conf. on Electrical Machines. Paper 609, IEEE, 2006.

4. El-Refaie A.M., McKeever J., Jahns T.M. Effect of back-EMF constraints on fractional-slot surface PM machines designed for wide constant-power speed range operation. — Proc. of the XVII Intern. Conf. on Electrical Machines (ICEM 2006), paper 140.

5. Bianchi N., Dai Pre M. Use of star of slots in designing fractional slot single-layer synchronous motors. — IEEE Proc. Electr. Power Appl, 2006, vol. 153, No. 3, pp. 459-466. DOI: 10.1049/ip-epa:20050284.

6. El-Refaie A.M., Jahns T.M., Novotny D.W. Analysis of surface permanent magnet machines with fractional slot concentrated windings. — IEEE Trans. on Energy conversion, 2006, vol. 21, No. 1, pp. 34—43.

7. Libert F., Soulard J. Investigation on pole slot combination for permanent magnet machines with concentrated windings. — Proc. of the 2004 Intern. Conf. on Electrical Machines (ICEM 2004), paper 530.

8. Gerlando A.D., Perini R., Ubaldini M. High pole number, PM synchronous motor with concentrated coil armature windings. — Proc. of the XVI Intern. Conf. on Electrical Machines (ICEM 2004), paper 58.

9. Alexandrova Y., Semken R.S., Pyrhonen J. Permanent magnet synchronous generator design solution for large direct-drive wind turbines. — Int. Review of Electrical Engineering (IREE), 2013, No. 8(6), pp. 1728—1737.

10. Антипов В.Н., Грозов А.Д., Иванова А.В. Выбор конст­рукции электрического ветрогенератора мегаваттного диапазо­на мощностей. — Электричество, 2020, № 4, c. 56—63.

11. Bang D., Polinder H., Shrestha G., Ferreira J.A. Promising direct-drive generator system for large wind turbines. — EPE Journal, 2008, No. 18(3), pp. 7—13.

12. Zhang J., Chen Z., Cheng M. Design and comparison of a novel stator interior permanent magnet generator for direct-drive wind turbines. — IET Renewable Power Generation, 2007, No. 1(4), pp. 203—210.

13. Polinder H., van der Pijl F.A. Comparison of direct drive and geared concepts for wind turbines. — IEEE Trans. Energy Conversion, 2006, No. 21 (3), pp. 725-733.

14. Sethuraman L., Maness M., Dykes K. Optimized generator designs for the DTU 10-MW offshore wind turbine using generator SE. AIAA SciTech Forum: 35th Wind Energy Symposium. DOI: 10.2172/1395455.

15. Zhu Z.Q., Ruangsinchaiwanich S., Schofield N., Howe D. Reduction of cogging torque in interior-magnet brushless machines. — IEEE Trans. on Magnetics, 2003, vol. 39, No. 5, pp. 3238—3240. DOI: 10.1109/INTMAG.2003.1230613.

16. Salminen P., Parvianen A., Ntemela M., Pyrhonen J. Influence of air gap diameter to the performance of concentrated wound permanent magnet motors. — Proc. of the XIII Intern. Symposium on Electromagnetic Fields in Mechatronics (ISEF2007). DOI: 10.3233/978-1-58603-895-3-276.

#

1. Wrobеl R., Mellor P.H. Design consideration оГ a direct drive brushless machine with concentrated windings. — IEEE Trans. on Energy conversion, 2007, vol. 23, No. 1. pp. 1-8. DOI: 10.1109/TEC.2007.905073.

2. Reichert R.K. PM-motors with concentrated non overlapping windings. Some Characteristics. Proc. of the XVI Intern. Conf. on Electrical Machines (ICEM 2004), paper 541.

3. Nuscheler R. Comparison of permanent magnet synchronous machines with distributed and concentrated windings. — Proc. of the XVII Intern. Conf. on Electrical Machines. Paper 609, IEEE, 2006.

4. El-Refaie A.M., McKeever J., Jahns T.M. Effect of back-EMF constraints on fractional-slot surface PM machines designed for wide constant-power speed range operation. — Proc. of the XVII Intern. Conf. on Electrical Machines (ICEM 2006), paper 140.

5. Bianchi N., Dai Pre M. Use of star of slots in designing fractional slot single-layer synchronous motors. — IEEE Proc. Electr. Power Appl, 2006, vol. 153, No. 3. pp. 459—466. DOI: 10.1049/ip-epa:20050284.

6. El-Refaie A.M., Jahns T.M., Novotny D.W. Analysis of surface permanent magnet machines with fractional slot concentrated windings. — IEEE Trans. on Energy conversion, 2006, vol. 21, No. 1, pp. 34—43.

7. Libert F., Soulard J. Investigation on pole slot combination for permanent magnet machines with concentrated windings. — Proc. of the 2004 Intern. Conf. on Electrical Machines (ICEM 2004), paper 530.

8. Gerlando A.D., Perini R., Ubaldini M. High pole number, PM synchronous motor with concentrated coil armature windings. — Proc. of the XVI Intern. Conf. on Electrical Machines (ICEM 2004), paper 58.

9. Alexandrova Y., Semken R.S., Pyrhonen J. Permanent magnet synchronous generator design solution for large direct-drive wind turbines. — Int. Review of Electrical Engineering (IREE), 2013, No. 8(6), pp. 1728—1737.

10. Antipov V.N., Grozov A.D., Ivanova A.V. Elektrichestvo — in Russ. (Electricity), 2020, No. 4, pp. 56—63.

11. Bang D., Polinder H., Shrestha G., Ferreira J.A. Promising direct-drive generator system for large wind turbines. — EPE Journal, 2008, No. 18(3), pp. 7—13.

12. Zhang J., Chen Z., Cheng M. Design and comparison of a novel stator interior permanent magnet generator for direct-drive wind turbines. — IET Renewable Power Generation, 2007, No. 1(4), pp. 203—210.

13. Polinder H., van der Pijl F.A. Comparison of direct drive and geared concepts for wind turbines. — IEEE Trans. Energy Conversion, 2006, No. 21 (3), pp. 725—733.

14. Sethuraman L., Maness M., Dykes K. Optimized generator designs for the DTU 10-MW offshore wind turbine using generator SE. AIAA SciTech Forum: 35th Wind Energy Symposium. DOI: 10.2172/1395455.

15. Zhu Z.Q., Ruangsinchaiwanich S., Schofield N., Howe D. Reduction of cogging torque in interior-magnet brushless machines. — IEEE Trans. on Magnetics, 2003, vol. 39, No. 5, pp. 3238—3240. DOI: 10.1109/INTMAG.2003.1230613.

16. Salminen P., Parvianen A., Ntemela M., Pyrhonen J. Influence of air gap diameter to the performance of concentrated wound permanent magnet motors. — Proc. of the XIII Intern. Symposium on Electromagnetic Fields in Mechatronics (ISEF2007). DOI: 10.3233/978-1-58603-895-3-276.

Published
2020-09-21
Section
Article