Analytical and Numerical Simulation of Magnetoelectric Valve Motors

  • Alexander A. AFANASYEV
  • Валерий Семёнович Генин
  • Vladimir A. VATKIN
  • Vyacheslav V. EFIMOV
  • Artem I. MALININ
  • Dmitry A. TOKMAKOV
Keywords: partition the computational domain, geometrically uniform bands, conditions for the coupling of the magnetic field, magnetization of ferromagnetic sections, induction in the air gap, EMF of the winding, electromagnetic moment, finite element method, ELCUT program

Abstract

An analytical method for calculating the magnetic field of a magnetoelectric valve motor is proposed, based on the tearing of its active region into a set of geometrically homogeneous bands, at the boundaries of which the conditions for the conjugation of their magnetic fields are met: scalar magnetic potentials and normal components of magnetic induction do not undergo a jump (break). If the magnetic sheets of the windings, for calculation convenience, are located at the boundaries of the specified bands, then the magnetic potentials at the boundaries will have a jump by the value of the total current of the magnetic sheet. To increase the accuracy of the calculation, you should increase the number of bands (sampling) of the active region. When using the computational technology of Fourier variables separation, the conjugation conditions will be reduced to solving a system of linear equations to find the corresponding Fourier constants. As sources of the magnetic field of the motor, in addition to permanent magnets and stator winding currents, the magnetization of the ferromagnetic sections of its magnetic circuit is proposed. The results of magnetic field calculation by this analytical method are compared with the data of the numerical simulation of the considered machine based on the mathematical program ELCUT 6.3.

Author Biographies

Alexander A. AFANASYEV

(Chuvash State University, Cheboksary, Russia) – Professor of Management and Computer Science in Technical Systems Dept., Dr. Sci. (Eng.).

Валерий Семёнович Генин

(Chuvash State University, Cheboksary, Russia) – Professor of Management and Computer Science in Technical Systems Dept., Dr. Sci. (Eng.).

Vladimir A. VATKIN

(JSC “Cheboksary Electrical Apparatus Plant”, Cheboksary, Russia) – Chief Designer of the Electric Machines Dept., Cand. Sci. (Eng.).

Vyacheslav V. EFIMOV

(JSC “Cheboksary Electrical Apparatus Plant”, Cheboksary, Russia) – Chief Specialist of the Electric Machines Dept., Cand. Sci. (Eng.).

Artem I. MALININ

(JSC “Cheboksary Electrical Apparatus Plant”, Cheboksary, Russia) – Design Engineer of the Electric Machines Dept.

Dmitry A. TOKMAKOV

(JSC “Cheboksary Electrical Apparatus Plant”, Cheboksary, Russia) – Development Director.

References

1. Поливанов К.М. Теоретические основы электротехники, ч. 3. Теория электромагнитного поля. М.: Энергия, 1969, 352 с.
2. Поливанов К.М. Ферромагнетики. М.;Л.: ГЭИ, 1957, 256 с.
3. Полянин А.Д. Справочник по линейным уравнениям математической физики. М.: Физматлит, 2001, 576 с.
4. Боголюбов А.Н., Кравцов В.В. Задачи по математической физике: Учебное пос. М.: Изд-во МГУ, 1998, 350 с.
5. Жуков В.П., Нестерин В.А. Высокомоментные вентильные электродвигатели серии 5ДВМ. – Электротехника, 2000, № 6, с. 19–21.
6. Афанасьев А.А. Математическое моделирование электромеханических систем. Чебоксары: Изд-во Чуваш. ун-та, 2020, 274 с.
7. Афанасьев А.А. Расчёт магнитоэлектрических вентильных двигателей методом разделения переменных Фурье. – Электротехника, 2021, № 2, с. 21–27.
8. Афанасьев А.А. Математические модели магнитоэлектрических вентильных двигателей. – Электричество, 2021, № 2, с. 66–70.
9. ELCUT Моделирование двумерных полей методом конечных элементов, версия 5.8: Руководство пользователя. С.-Пб.: ПК ТОР, 2010, 345 c.
10. Дергачёв П.А., Кирюхин В.П., Кулаев Ю.В., Курбатов П.А., Молоканов О.Н. Анализ двухступенчатого магнитного мультипликатора. – Электротехника, 2012, № 5, с. 39–46.
11. Воронкин В.А., Геча В.Я., Городецкий Э.А., Евланов В.В., и др. Методы проектирования малошумных электрических машин. – Вопросы электромеханики. Труды ВНИИЭМ, 2006, т. 103, с 6–171.
12. Геча В.Я., Урядников В.В. Анализ магнитных вибраций сердечника статора с учетом магнитострикции электротехнической стали. – Труды ВНИИЭМ, 1981, т. 68, с. 110–117.
13. Molokanov O., Dergachev P., Kiruhin V., Kurbatov P. Ana-lyses and experimental validation of coaxial magnetic planetary gear. – Proceedings of 18th International Symposium on Electrical Apparatus and Technologies (SIELA), 2014, DOI:10.1109/SIELA.2014.6871876.
14. Rasmussen P.O., Frandsen T.V., Jensen K.K., Jessen K. Ex-perimental evaluation of a motor integrated permanent magnet gear. – IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, Arizona, 2011, DOI:10.1109/ECCE.2011.6064311.
15. Atallah K., Howe D. A novel high-performance magnetic gear. – IEEE Transactions on Magnetics, 2001, vol. 37, No. 4, pp. 2844–2846.
16. Deng F. An Improved Iron Loss Estimation for Permanent Magnet Brushless Machines. – IEEE Transaction on Energy Conversion, 2000, vol. 14, No. 4, pp. 1391–1394.
#
1. Polivanov К.М. Teoreticheskie osnovy elektrotekhniki, ch. 3. Teoriya elektromagnitnogo polya (Theoretical foundations of electrical engineering, part 3. Theory of the electromagnetic field). М.: Energiya, 1969, 352 p.
2. Polivanov К.М. Ferromagnetiki (Ferromagnets). М.;L.: GEI, 1957, 256 p.
3. Polyanin А.D. Spravochnik po lineynym uravneniyam matematicheskoy fiziki (Handbook of linear Equations of Mathematical Physics). М.: Fizmatlit, 2001, 576 p.
4. Bogolyubov A.N., Kravtsov V.V. Zadachi po matematicheskoy fizike: Uchebnoe pos. (Problems in mathematical physics: A textbook). М.: Izd-vо MGU, 1998, 350 p.
5. Zhukov V.P., Nesterin V.А. Elektrotekhnika – in Russ. (Elec-trical Engineering), 2000, No. 6, pp. 19–21.
6. Afanas'ev А.А. Matematicheskoe modelirovanie elektromekha-nicheskih sistem (Mathematical modeling of electromechanical sys-tems). Cheboksary: Izd-vo Chuvash. un-ta, 2020, 274 p.
7. Afanas'ev А.А. Elektrotekhnika – in Russ. (Electrical Engi-neering), 2021, № 2, с. 21–27.
8. Afanas'ev А.А. Elektrichestvo – in Russ. (Electrisity), 2021, No. 2, pp. 66–70.
9. ELCUT. Modelirovanie dvumernyh poley metodom konechnyh elementov versiya 5.8: Rukovodstvo polzovatelya (Finite element modeling of two-dimensional fields, version 5.8: User's Guide). S.-Pb.: PK “ТОR”, 2010, 345 p.
10. Dergachyov P.A., Kiryuhin V.P., Kulaev Yu.V., Kurbatov P.A.,Molokanov О.N. Elektrotekhnika – in Russ. (Electrical Enginee-ring),2012, No. 5, pp. 39–46.
11. Voronkin V.A., Gecha V.Ya., Gorodetskiy E.A., Evlanov V.V., et all. Voprosy elektromekhaniki. Trudy VNIIEM – in Russ. (Questions of electromechanics. Proceedings of VNIIEM), 2006, vol. 103, pp. 6–171.
12. Gecha V.Ya., Uryadnikov V.V. Trudy VNIIEM – in Russ. (Proceedings of VNIIEM), 1981, vol. 68, pp. 110–117.
13. Molokanov O., Dergachev P., Kiruhin V., Kurbatov P. Analyses and experimental validation of coaxial magnetic planetary gear. – Proceedings of 18th International Symposium on Electrical Apparatus and Technologies (SIELA), 2014, DOI:10.1109/SIELA.2014.6871876.
14. Rasmussen P.O., Frandsen T.V., Jensen K.K., Jessen K. Ex-perimental evaluation of a motor integrated permanent magnet gear. – IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, Arizona, 2011, DOI:10.1109/ECCE.2011.6064311.
15. Atallah K., Howe D. A novel high-performance magnetic gear. – IEEE Transactions on Magnetics, 2001, vol. 37, No. 4, pp. 2844–2846.
16. Deng F. An Improved Iron Loss Estimation for Permanent Magnet Brushless Machines. – IEEE Transaction on Energy Conversion, 2000, vol. 14, No. 4, pp. 1391–1394.
Published
2021-04-27
Section
Article