Controlling a Direct Matrix Frequency Converter of Secondary Power Supply Sources for Autonomous Objects

  • Maxim A. KISLYAKOV
  • Kirill K. KRUTIKOV
  • Vyacheslav V. ROZHKOV
Keywords: on-board electrical network, matrix frequency converter, high-frequency switching, sliding mode control, total harmonic distortion, computer simulation

Abstract

A version of using "sliding modes" in performing discontinuous control of dynamic objects for matrix frequency converters (MFC) as part of an on-board aircraft network is proposed. Unlike the way used in the existing MFC control algorithms, the sinusoidal voltages available in the primary network are processed according to the proposed modernized technology of "sliding modes". The level of discontinuous voltages is selected from the condition of minimum deviations from the target, which has a favorable effect on the spectrum of output voltages. On the selected time interval, the input primary network phase voltages and the specified output network phase voltages are sampled. A positive minimum difference between the primary network phase voltage closest to its desired value and the specified secondary network phase voltage is produced. This difference acts as a positive discontinuous control. A negative difference acts as a negative discontinuous control. Over the calculated interval, the average deviation from the specified phase voltage is zero. Owing to this feature, the smallest distortions in the MFC output voltage spectrum are obtained at arbitrary loads and evolutions of the primary network voltage frequency and amplitude. Versions of three-phase and six-phase primary sources are considered. The effectiveness of the proposed version of using "sliding modes" has been confirmed by simulation.

Author Biographies

Maxim A. KISLYAKOV

(Branch of the National Research University «Moscow Power Engineering Institute» in Smolensk, Smolensk, Russia) –  Senior Lecturer of the Theoretical Foundations of Electrical Engineering Dept

Kirill K. KRUTIKOV

(Branch of the National Research University «Moscow Power Engineering Institute» in Smolensk, Smolensk, Russia) – Docent of the Theoretical Foundations of Electrical Engineering Dept., Cand. Sci. (Eng)

Vyacheslav V. ROZHKOV

(Branch of the National Research University «Moscow Power Engineering Institute» in Smolensk, Smolensk, Russia) – Deputy Director for Educational and Methodological Work, Head of the Electromechanical Systems Dept., Cand. Sci. (Eng)

References

1. Грузков С.А. Электрооборудование летательных аппаратов, ч.1. М.: Изд-во МЭИ, 2005, 568 с.
2. Грузков С.А. Электрооборудование летательных аппаратов, ч.2. М.: Изд-во МЭИ, 2008, 552 с.
3. Лёвин А.В., Юхнин М.М., Лившиц Э.Я., Харитонов С.А. и др. разработки системы генерирования электрической энергии типа «переменная скорость – постоянная частота» на базе синхронных генераторов и инверторов напряжения. – Силовая интеллектуальная электроника, 2007, № 1, с. 17–21.
4. Лёвин А.В., Алексеев И.И., Харитонов С.А., Ковалев Л.К. и др. Электрический самолет: от идеи до реализации. М.: Машиностроение, 2010, 288 с.
5. Стенников А.А. Автономные системы генерирования электроэнергии переменного тока с асинхронными генераторами. – Материалы НТК: Информатика и проблемы телекоммуникации, Новосибирск, 1999, с. 51–52.
6. Харитонов С.А. Системы генерирования электроэнергии для ветроэнергетики и автономных подвижных объектов (анализ и синтез): дис. … докт. техн. наук, Новосибирск, НГТУ, 1998, 619 с.
7. Харитонов С.А. Электромагнитные процессы в системах генерирования электроэнергии для автономных объектов. Новосибирск: Изд. НГТУ, 2011, 536 с.
8. Машинский В.В. Резервная система генерирования электрической энергии для летательных аппаратов: дис. … канд. техн. наук, Новосибирск, НГТУ, 2014, 134 с.
9. Джюджи Л., Пелли Б. Силовые полупроводниковые преобразователи частоты: Теория, характеристики, применение. М.: Энергоатомиздат, 1983, 400 с.
10. Щелкунов Р.Г. Модель матричного преобразователя частоты. – Материалы, оборудование и ресурсосберегающие технологии: материалы междунар. науч.-техн. конф., Гомель, 2018, с. 321–323.
11. Дарьенков А.Б., Чернов Е.А., Кочаганов Д.М., Абузяров Т.Х. Сравнительное имитационное моделирование работы матричного преобразователя частоты со скалярным и пространственно- векторным алгоритмами управления. – Труды НГТУ им. Р.Е. Алексеева, 2018, № 4 (23), с. 89–98.
12. Уткин В.И. Скользящие режимы в задачах оптимизации и управления. М.: Наука, 1981, 367 с.
13. Naveed A. et all. A single-phase buck and boost AC-to-AC converter with bipolar voltage gain: analysis, design, and implementation. – Energies, 2019, No. 12, 1376, DOI:10.3390/en12071376.
14. López-Robles E. et all. Voltage regulation of a matrix converter with balanced and unbalanced three-phase loads. – Journal of Applied Research and Technology, 2015, No. 13, pp. 510–522.
15. Jeremy Van Gorpet et all. Binary signals design to control the matrix converter in the context of smart grids. – IFAC Papers OnLine, 2017, vol. 50 (1), pp. 2119–2124, DOI: 10.1016/j.ifacol.2017.08.537.
16. Mahajanaet S. et all. Analysis and control of induction generator supplying stand-alone AC loads employing a Matrix Converter. – Engineering Science and Technology an International Journal, 2017, 11, pp. 649–661.
17. Essamd E.M., Mahmoud A.S. Matrix converters and three-phase inverters fed linear induction motor drives–Performance compare. – Ain Shams Engineering Journal, 2018, 9(3), pp. 329–340.Essen: Vulkan Verlag, 2008, 212 p.
#
1. Gruzkov S.A. Elektrooborudovanie letatel'nyh apparatov (Electrical equipment of aircraft), p.1. М.: Izd-vо МEI, 2005, 568 p.
2. Gruzkov S.A. Elektrooborudovanie letatel'nyh apparatov (Electrical equipment of aircraft), p. 2. М.: Izd-vо МEI, 2008, 552 p.
3. Lyovin A.V., Yuhnin M.M., Livshits E.Ya., Haritonov S.А. et all. Silovaya intellektual'naya elektronika – in Russ. (Power intelligent electronics), 2007, No. 1, pp.17–21.
4. Lyovin A.V., Alekseev I.I., Haritonov S.A., Kovalev L.К. et all. Elektricheskiy samolet: ot idei do realizatsii (Electric aircraft: from idea to implementation). М.: Mashinostroenie, 2010, 288 p.
5. Stennikov A.A. Materialy NTK: Informatika i problemy telekommunikatsii – in Russ. (Proceedings of the STC: Informatics and Telecommunications Problems), Novosibirsk, 1999, pp. 51–52.
6. Haritonov S.А. Sistemy generirovaniya elektroenergii dlya vetroenergetiki i avtonomnyh podvizhnyh ob"ektov (analiz i sintez) (Electricity generation systems for wind energy and autonomous mobile objects (analysis and synthesis)): diss. … Dr. Sci. (Eng.), Novosibirsk, NGTU, 1998, 619 p.
7. Haritonov S.А. Elektromagnitnye protsessy v sistemah gene-rirovaniya elektroenergii dlya avtonomnyh ob"ektov (Electromagnetic processes in power generation systems for autonomous objects). Novosibirsk: Izd. NGTU, 2011, 536 p.
8. Mashinsky V.V. Rezervnaya sistema generirovaniya elektricheskoy energii dlya letatel'nyh apparatov (Back-up system for generating electrical energy for aircraft): diss. … Cand. Sci. (Eng.), Novosibirsk, NGTU, 2014, 134 p.
9. Dzhuji L., Pelly B. Silovye poluprovodnikovye preobrazovateli chastoty: Teoriya, harakteristiki, primenenie (Power semiconductor frequency converters: Theory, characteristics, application). М.: Energoatomizdat, 1983, 400 p.
10. Shchelkunov R.G. Materialy, oborudovanie i resursosbere-gayushchee tekhnologii: materialy mezhdunar. nauch.-tekhn. konf. – in Russ. (Materials, equipment and resource-saving technologies: materials of international scientific-technical. conf.), Gomel, 2018, pp. 321–323.
11. Darienkov A.B., Chernov E.A., Kochaganov D.M., Abuzya-rov T.Kh. Trudy NGTU im. R.E. Alekseeva – in Russ. (Proceedings of NSTU n.a. R.E. Alekseev), 2018, No. 4 (23), pp. 89–98.
12. Utkin V.I. Skol'zyashchie rezhimy v zadachah optimizatsii i upravleniya (Sliding modes in optimization and control problems). М.: Nauka, 1981, 367 p.
13. Naveed A. et all. A single-phase buck and boost AC-to-AC converter with bipolar voltage gain: analysis, design, and implementation. – Energies, 2019, No. 12, 1376, DOI:10.3390/en12071376.
14. López-Robles E. et all. Voltage regulation of a matrix converter with balanced and unbalanced three-phase loads. – Journal of Applied Research and Technology, 2015, No. 13, pp. 510–522.
15. Jeremy Van Gorpet et all. Binary signals design to control the matrix converter in the context of smart grids. – IFAC Papers OnLine, 2017, vol. 50 (1), pp. 2119–2124, DOI: 10.1016/j.ifacol.2017.08.537.
16. Mahajanaet S. et all. Analysis and control of induction generator supplying stand-alone AC loads employing a Matrix Converter. – Engineering Science and Technology an International Journal, 2017, 11, pp. 649–661.
17. Essamd E.M., Mahmoud A.S. Matrix converters and three-phase inverters fed linear induction motor drives–Performance compare. – Ain Shams Engineering Journal, 2018, 9(3), pp. 329–340.
Published
2021-03-09
Section
Article