Optimizing a Hybrid Aircraft’s Propulsion System Architecture

  • Anton N. VARYUKHIN
  • Mikhail V. GORDIN
  • Andrey V. DUTOV
  • Sergey I. MOSHKUNOV
  • Vladislav Yu. KHOMICH
  • Ekaterina A. SHERSHUNOVA
Keywords: hybrid propulsion system, aircraft, electric aircraft, DC/DC voltage pulse converter, solid state switch

Abstract

The scheme of an aircraft’s hybrid propulsion system, which includes an assembly of DC voltage converters (some which are bidirectional), fuel cells, lithium-ion storage batteries, a power flow distribution controller, and an inverter electric motor, is proposed. With such scheme, it is possible to flexibly change the power supplied to the electric motor, to scale the propulsion system for the necessary purposes, and to charge the storage battery in the course of aircraft descending and landing. A method for calculating static and dynamic losses in the boost converter used in the propulsion system is presented. The converter mass is estimated depending on the switching frequency for different types of power switching devices, including the calculation of the mass of capacitive, inductive and switching elements. Calculations have shown that the minimum mass of a pulse power converter operating at a repetition frequency of 100 kHz with a power of 80 kW at an output voltage of 300 V is 8.2 kg. With the repetition frequency increased to 1 MHz, the converter mass increases by almost five times to reach 40 kg.

Author Biographies

Anton N. VARYUKHIN

(Central Institute of Aviation Motors, Moscow, Russia) – Head of the Electric (Hybrid) Power Plants, Systems and Aircrafts Dept., Cand. Sci. (Eng.).

Mikhail V. GORDIN

(Central Institute of Aviation Motors, Moscow, Russia)  – General Director, Cand. Sci. (Eng.).

Andrey V. DUTOV

(The National Research Center "Zhukovsky Institute", Zhukovsky, Russia) – General Director, Dr. Sci. (Eng.).

Sergey I. MOSHKUNOV

(Institute for Electrophysics and Electric Power RAS, Saint Petersburg, Russia) – Deputy Director for Science, Dr. Sci. (Eng.).

Vladislav Yu. KHOMICH

(Institute for Electrophysics and Electric Power RAS, Saint Petersburg, Russia) – Scientific Director, Academic of the Russian Academy of Sciences, Dr. Sci. (Phys.-Math.).

Ekaterina A. SHERSHUNOVA

(Institute for Electrophysics and Electric Power RAS, Saint Petersburg, Russia) – Head of the Laboratory, Cand. Sci. (Eng.).

References

1. Gong A., Verstraete D. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: Current status and research needs. – International Journal of Hydrogen Energy, 2017, vol. 42(33), pp. 21311–21333, DOI: 10.1016/j.ijhydene.2017.06.148.
2. Bicer Y., Dincer I. Life cycle evaluation of hydrogen and other potential fuels for aircrafts. – International Journal of Hydrogen Energy, 2017, vol. 42(16), pp. 10722–10738, DOI: 10.1016/j.ijhydene.2016.12.119.
3. Hwang H. T., Varma A. Hydrogen storage for fuel cell vehicles. – Current Opinion in Chemical Engineering, 2014, vol. 5, pp. 42–48, DOI: 10.1016/j.coche.2014.04.004.
4. Verstraete D. Long range transport aircraft using hydrogen fuel – International Journal of Hydrogen Energy, 2013, vol. 38(34), pp. 14824-14831, DOI: 10.1016/j.ijhydene.2013.09.021.
5. Варюхин А.Н., Гордин М.В., Захарченко В.С. и др. Силовой многофазный импульсный преобразователь для гибридных летательных аппаратов. – Известия РАН. Энергетика, 2019, № 6, c. 121–129, DOI: 10.1134/S0002331019060128.
6. Варюхин А.Н., Гордин М.В. Дутов А.В. и др. Мощный импульсный преобразователь постоянного тока на карбид-кремниевых транзисторах. – Прикладная физика, 2021, № 1, c. 75–81, DOI: 10.51368/1996-0948-2021-1-75-81.
7. Мошкунов С.И., Хомич В.Ю., Шершунова Е.А. Повышающе-понижающий преобразователь напряжения для заряда аккумуляторной батареи на борту электрического самолета – Письма в журнал технической физики, 2020, т. 46(15), с. 22–24, DOI: 10.21883/PJTF.2020.15.49743.18139.
8. Gur O., Rosen A. Optimizing Electric Propulsion Systems for Unmanned Aerial Vehicles. – Journal of Aircraft, 2009 , vol. 46 (4), pp. 1340– 1353, DOI: 10.2514/1.41027.
9. Kim K., Kim T., Lee K., Kwon S. Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles. – Journal of Power Sources, 2011, vol. 196 (21), pp. 9069–9075, DOI: 10.1016/j.jpowsour.2011.01.038.
10. Kim T., Kwon S. Design and development of a fuel cell-powered small unmanned aircraft. – International Journal of Hydrogen Energy, 2012, vol. 37(1), pp. 615–622, DOI: 10.1016/j.ijhydene.2011.09.051.
11. Ivanovic Z., Blanusa B., Knezic M. Power loss model for efficiency improvement of boost converter. – 2011 XXIII International Symposium on Information, Communication and Automation Technologies, 2011, DOI: 10.1109/ICAT.2011.6102129.
12. Ramo S., Whinnery J. R., Van Duzer T. Fields and Waves in Communication Electronics 3rd ed. New York: John Wiley and Sons, 1994, 858 р.
13. Hauke B. Basic Calculation of a Boost Converter's Power Stage. Texas Instruments, Application Report, 2009, Nov., рр. 1–9.
14. Eichhorn T. Boost converter efficiency through accurate calculations. – Power Electron., 2008, Sept., pp. 30–35.
15. Какитани Х., Такедa Р. Выбор наилучшего силового ключа для источников питания по величине заряда затвора. – Силовая электроника, 2014, № 3, с. 67–72.
#
1. Gong A., Verstraete D. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: Current status and research needs. –
International Journal of Hydrogen Energy, 2017, vol. 42(33),
pp. 21311–21333, DOI: 10.1016/j.ijhydene.2017.06.148.
2. Bicer Y., Dincer I. Life cycle evaluation of hydrogen and other potential fuels for aircrafts. – International Journal of Hydrogen Energy, 2017, vol. 42(16), pp. 10722–10738, DOI: 10.1016/j.ijhydene.2016.12.119.
3. Hwang H. T., Varma A. Hydrogen storage for fuel cell vehicles. – Current Opinion in Chemical Engineering, 2014, vol. 5,
pp. 42–48, DOI: 10.1016/j.coche.2014.04.004.
4. Verstraete D. Long range transport aircraft using hydrogen fuel – International Journal of Hydrogen Energy, 2013, vol. 38(34),
pp. 14824-14831, DOI: 10.1016/j.ijhydene.2013.09.021.
5. Varyukhin A.N., Gordin M.V., Zakharchenko V.S., et al. Izvestiya RAN. Energetika – in Russ. (Izvestiya RAS. Energy Industry), 2019, No. 6, pp. 121–129, DOI: 10.1134/S0002331019060128.
6. Varyukhin A.N., Gordin M.V. Dutov A.V., et al. Prikladnaya fizika – in Russ. (Applied Physics), 2021, No. 1, pp. 75–81, DOI: 10.51368/1996-0948-2021-1-75-81.
7. Moshkunov, S.I., Khomich, V.Yu., Shershunova, E.A. Pis'ma v zhurnal tekhnicheskoy fiziki – in Russ. (Technical Physics Letters), 2020, vol. 46(15), pp. 22–24, DOI: 10.21883/PJTF.2020.15.49743.18139.
8. Gur O., Rosen A. Optimizing Electric Propulsion Systems for Unmanned Aerial Vehicles. – Journal of Aircraft, 2009 , vol. 46 (4), pp. 1340– 1353, DOI: 10.2514/1.41027.
9. Kim K., Kim T., Lee K., Kwon S. Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles. – Journal of Power Sources, 2011, vol. 196 (21), pp. 9069–9075, DOI: 10.1016/j.jpowsour.2011.01.038.
10. Kim T., Kwon S. Design and development of a fuel cell-powered small unmanned aircraft. – International Journal of Hydrogen Energy, 2012, vol. 37(1), pp. 615–622, DOI: 10.1016/j.ijhydene.2011.09.051.
11. Ivanovic Z., Blanusa B., Knezic M. Power loss model for efficiency improvement of boost converter. – 2011 XXIII International Symposium on Information, Communication and Automation Technologies, 2011, DOI: 10.1109/ICAT.2011.6102129.
12. Ramo S., Whinnery J. R., Van Duzer T. Fields and Waves in Communication Electronics 3rd ed. New York: John Wiley and Sons, 1994, 858 р.
13. Hauke B. Basic Calculation of a Boost Converter's Power Stage. Texas Instruments, Application Report, 2009, Nov., рр. 1–9.
14. Eichhorn T. Boost converter efficiency through accurate calculations. – Power Electron., 2008, Sept., pp. 30–35.
15. Kakitani H., Takeda R. Silovaya elektronika – in Russ. (Power Electronics), 2014, No. 3, pp. 67–72.
Published
2021-06-03
Section
Article