Tests of an HTSC-2G Coil for Neuron Studies

  • Dmitry N. DIEV
  • Ivan A. Kovalev
  • Marina N. MAKARENKO
  • Andrey V. NAUMOV
  • Alexey V. POLYAKOV
  • Mikhail I. SURIN
  • Dar'ya I. SHUTOVA
  • Vladimir I. SHCHERBAKOV
Keywords: superconductivity, high-temperature superconductor, neuron activity, HTSC-2G tape, cryomagnetic system, magnetic field

Abstract

The article describes the development, fabrication, and test results of a double pancake сoil made using second-generation high-temperature superconductors (HTSC-2G). The HTSC-2G coil is the key element of the cryomagnetic system intended for use as part of an experimental research setup for remotely controlling the expression of neurons by means of constant and low-frequency (up to 100 Hz) magnetic field. This project is a continuation of works [1] carried out on the integrated topic “Electronic Components and Neuromorphic Ccontrol Systems”, which includes, as a constituent part, the development and fabrication of an HTSC-2G cryomagnetic system for studying neuron activity under the effect of external magnetic field. A distinctive feature of the project is the use of a cryomagnetic system with a low energy consumption achieved owing to the use of modern HTSC materials. This will open the possibility to continuously observe the object under study from the start of its exposure to magnetic field to the occurrence of reaction signs. The technology for winding a double pancake HTSC-2G coil is developed and described. For making the coil, an HTSC-2G wire in polyamide varnish insulation was used. The technology of making inner junctions in double pancake HTSC-2G coils with a transition resistance of less than 120 nΩ at 77 K has been developed and successfully tried out. The results from preliminary tests of the HTSC-2G coil in liquid nitrogen are presented.

Author Biographies

Dmitry N. DIEV

(Kurchatov Complex of NBICS Nature-Like Technologies of National Research Centre “Kurcha-tov Institute”, Moscow, Russia) – Senior Researcher of the Superconductivity Dept., Cand. Sci. (Eng.).

Ivan A. Kovalev

(Kurchatov Complex of NBICS Nature-Like Technologies of National Research Centre “Kurchatov Institute”, Moscow, Russia) – Leading Researcher of the Superconductivity Dept., Cand. Sci. (Eng.).

Marina N. MAKARENKO

(Kurchatov Complex of NBICS Nature-Like Technologies of National Research Centre “Kurchatov Institute”, Moscow, Russia) – Deputy Head of the Laboratory of the Superconductivity Dept.

Andrey V. NAUMOV

(Kurchatov Complex of NBICS Nature-Like Technologies of National Research Centre “Kurchatov Institute”, Moscow, Russia) – Leading Engineer of the Superconductivity Dept.

Alexey V. POLYAKOV

(Kurchatov Complex of NBICS Nature-Like Technologies of National Research Centre “Kurchatov Institute”, Moscow, Russia) – Research Scientist of the Superconductivity Dept.

Mikhail I. SURIN

(Kurchatov Complex of NBICS Nature-Like Technologies of National Research Centre “Kurchatov Institute”, Moscow, Russia) – Deputy Head of the Superconductivity Dept., Dr. Sci. (Eng.).

Dar'ya I. SHUTOVA

(Kurchatov Complex of NBICS Nature-Like Technologies of National Research Centre “Kurchatov Institute”, Moscow, Russia) – Research Scientist of the Superconductivity Dept., Cand. Sci. (Phys.-Math.).

Vladimir I. SHCHERBAKOV

(Kurchatov Complex of NBICS Nature-Like Technologies of National Research Centre “Kurchatov Institute”, Moscow, Russia) – Head Specialist of the Superconductivity Dept.

References

1. Naumov A.V., Kovalev I.A., Surin M.I., et al. Development of Cryomagnetic Systems to Control Neural Activity by a Magnetic Field. – Nanotechnologies in Russia, 2019, vol. 14, No. 11–12, pp. 613–618.
2. Максимов А.В., Кирьянова В.В., Максимова М.А. Лечебное применение магнитных полей. – Физиотерапия, Бальнеология и Реабилитация, 2013, № 3, с. 34–39.
3. Reale. M., Kamal M.A., Patruno A., et al. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: Implications regarding oxidative stress and neurodegeneration. – PLoS ONE, 2014, № 9 (8), DOI: 10.1371/journal.pone.0104973.
4. Рудыкина O.A., Грехов Р.A., Сулейманова Г.П. и др. Электромагнитное поле и его влияние на физиологические процессы в организме человека. – Вестник Волгоградского гос. университета, 2016, № 3 (17), с. 54–62, DOI: https://doi.оrg/10.15688/jvolsu11.2016.3.7.
5. Diev D.N., Makarenko M.N., Naumov A.V., et. al. REBCO coil operation in gaseous helium and solid nitrogen. – Progress in Superconductivity and Cryogenics, 2019, vol. 21, iss. 3, pp. 47–50.
6. Diev D. N., Lepehin V. M., Makarenko M. N., et. al. ReBCO split coil magnet for high gradient magnetic separation. – ICEC-ICMC 2018, 2019, vol. 502, DOI:10.1088/1757-899X/502/1/012105.
7. Diev D. N., Lepehin V. M., Makarenko M. N., et. al. HTS high gradient magnetic separator prototype. – Progress in Superconductivity and Cryogenics, 2018, vol. 20, iss. 4, pp. 1–5.
8. Kovalev I.A., Surin M.I., Diev D.N., et. al. HTS current leads for the NICA accelerator complex. – Cryogenics, 2018, vol. 94(2), pp. 45–55.
9. Naumov A.V., Kovalev I.A., Surin M.I.., et. al. Test results of 12/18 kA ReBCO coated conductor current Leads. – Cryogenics, 2017, vol. 85, pp. 71–77.
10. Kole K., Zhang Y., Jansen E.J.R., et al. Assessing the utility of MAGNETO to control neuronal excitability in the somatosensory cortex. – Nature Neuroscience, 2020, DOI:10.1038/s41593-019-0474-4.
11. Wang G., Zhang P., Mendu S.K., et al. Revaluation of magnetic properties of Magneto, MagR and αGFP−TRPV1/GFP−ferritin. bioRxiv preprint, 2019, DOI: http://dx.doi.org/10.1101/737254.
12. Wheeler M.A., Smith C.J., Ottolini M., et al. Genetically targeted magnetic control of the nervous system. – Nature Neuroscience, vol. 19, No. 5, 2016, pp.756–761.
13. Stanley. S.A, Kelly L., Latcha K.N., et al. Bidirectional lectromagnetic control of the hypothalamus regulates feeding and metabolism. – Nature, 2016, vol 531, pp. 647–650.
14. Stanley. S.A, Sauer J., Kane R.S, et al. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. – Nature Medicine, 2015, vol. 21, No. 1, pp. 92–98.
15. Диев Д.Н., Лепехин В.М., Макаренко М.Н., и др. Криомагнитная система высокоградиентного магнитного сепаратора на основе высокотемпературных сверхпроводников второго поколения. – Ядерная физика и инжиниринг, 2018, т. 9, № 2, с. 130–140.
#
1. Naumov A.V., Kovalev I.A., Surin M.I., et al. Development of Cryomagnetic Systems to Control Neural Activity by a Magnetic Field. – Nanotechnologies in Russia, 2019, vol. 14, No. 11–12, pp. 613–618.
2. Maksimov А.V., Kiryanova V.V., Maksimovа М.А. Fizioterapiya, Bal'neologiya i Reabilitatsiya – in Russ. (Physiotherapy, Balneology and Rehabilitation), 2013, No. 3, pp. 34–39.
3. Reale. M., Kamal M.A., Patruno A., et al. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: Implications regarding oxidative stress and neurodegeneration. – PLoS ONE, 2014, № 9 (8), DOI: 10.1371/journal.pone.0104973.
4. Rudykina O.A., Grekhov R.A., Suleymanova G.P., et al. Vestnik Volgogradskogo gos. universiteta – in Russ. (Bulletin of the Volgograd State University), 2016, No. 3(17), pp. 54–62, DOI: https://doi.оrg/10.15688/jvolsu11.2016.3.7.
5. Diev D.N., Makarenko M.N., Naumov A.V., et. al. REBCO coil operation in gaseous helium and solid nitrogen. – Progress in Superconductivity and Cryogenics, 2019, vol. 21, iss. 3, pp. 47–50.
6. Diev D. N., Lepehin V. M., Makarenko M. N., et. al. ReBCO split coil magnet for high gradient magnetic separation. – ICEC-ICMC 2018, 2019, vol. 502, DOI:10.1088/1757-899X/502/1/012105.
7. Diev D. N., Lepehin V. M., Makarenko M. N., et. al. HTS high gradient magnetic separator prototype. – Progress in Superconductivity and Cryogenics, 2018, vol. 20, iss. 4, pp. 1–5.
8. Kovalev I.A., Surin M.I., Diev D.N., et. al. HTS current leads for the NICA accelerator complex. – Cryogenics, 2018, vol. 94(2),
pp. 45–55.
9. Naumov A.V., Kovalev I.A., Surin M.I.., et. al. Test results of 12/18 kA ReBCO coated conductor current Leads. – Cryogenics, 2017, vol. 85, pp. 71–77.
10. Kole K., Zhang Y., Jansen E.J.R., et al. Assessing the utility of MAGNETO to control neuronal excitability in the somatosensory cor-tex. – Nature Neuroscience, 2020, DOI:10.1038/s41593-019-0474-4.
11. Wang G., Zhang P., Mendu S.K., et al. Revaluation of magnetic properties of Magneto, MagR and αGFP−TRPV1/GFP−ferritin. bioRxiv preprint, 2019, DOI: http://dx.doi.org/10.1101/737254.
12. Wheeler M.A., Smith C.J., Ottolini M., et al. Genetically targeted magnetic control of the nervous system. – Nature Neuroscience, vol. 19, No. 5, 2016, pp.756–761.
13. Stanley. S.A, Kelly L., Latcha K.N., et al. Bidirectional lectromagnetic control of the hypothalamus regulates feeding and metabolism. – Nature, 2016, vol 531, pp. 647–650.
14. Stanley. S.A, Sauer J., Kane R.S, et al. Remote regulation of glucose homeostasis in mice using genetically encoded nanopartic-
les. – Nature Medicine, 2015, vol. 21, No. 1, pp. 92–98.
15. Diev D.N, Lepehin V.M., Makarenko M.N., et al. Yаdernaya fizika i inzhiniring – in Russ. (Nuclear Physics and Engineering), 2018, vol. 9, No. 2, pp. 130–140.
Published
2021-04-27
Section
Article