Selecting the Switching Frequency of the 6500 V IGBT High Voltage DC Converter

  • Sergey I. Volskiy
  • Yuri Yu. SKOROKHOD
  • Nikolay Echkilev
Keywords: high-voltage DC converter, IGBT, high switching frequency, power losses

Abstract

The high-voltage converter with the input voltage of 3000 V DC is considered for use as a power supply for auxiliary circuits of commuter electric trains and passenger cars that are used on Russian railways.
The limitations on the use of semiconductor devices in converters with an input voltage of 3000 V are shown. The power electrical circuits of the input units of the considered high-voltage converters are shown when using of 1700 and 6500 V IGBT. The expressions for calculating the power losses and the algorithm for selecting the switching frequency of 6500 in IGBT are given. This article is of interest to developers of high-voltage DC converters with an input voltage of 3000 V and higher, which choose IGBT for the power circuit of input units with using the high frequency principle of the electrical energy transformation.

Author Biographies

Sergey I. Volskiy

(Mos-cow Aviation Institute (The National Research University), Moscow, Russia) – Chair Professor of the Electrical Power, Electromechanics and Biotechnical Systems Dept., Dr. Sci. (Eng.).

Yuri Yu. SKOROKHOD

(Transconverter LLC, Moscow, Russia) – Head of the Design Office

Nikolay Echkilev

(Siemens Mobility GmbH, Krefeld, Germany) – Design Engineer (Eng.).

References

1. ГОСТ 9219-88. Аппараты электрические тяговые. Общие технические требования. М.: Издательство стандартов, 1988, 36 с.
2. Skorokhod Yu., Volskiy S., Antushev N., et al. Novel algorithm to protect converter from impulsive overvoltages by using neural networks. – PCIM2020, Nurnberg, 2020, pp. 1079–1085.
3. Мелешин В., Жикленков Д., Ганьшин А. Трехуровневый повышающий преобразователь напряжения. – Силовая электроника, 2015, № 2, с. 59–65.
4. Volskiy S., Skorokhod Y. Analysis of high-voltage converters with serial connection units and with input current correction. – 21st International Scientific Conference on Electric Power Engineering (EPE), Prague, 2020, pp. 133–137.
5. Мелешин В.И., Овчинников Д.А. Управление транзисторными преобразователями электроэнергии. Техносфера, 2011, 411 с.
6. Зиновьев Г.С. Силовая электроника. M.: Юрайт, 2015, 668 с.
7. Skorokhod Y., Sorokin D., Volskiy S. Development of the control system for three phase power factor corrector. – PCIM2019, Nurnberg, 2019, pp. 1813–1819.
8. Makarov S.N., Stephen R.L., Bitar J. Practical Electrical Engineering. Worcester Polytechnic Institute, Washington, USA, 2016, 986 p.
9. Попков O.З. Основы преобразовательной техники. М.: МЭИ, 2010, 200 с.
10. Sepehr A., Saradarzadeh M., Farhangi S. High-voltage Isolated Multioutput Power Supply for Multilevel Converters. – Turkish Journal of Electrical Engineering and Computer Science, 2017, vol. 25(4), pp. 3319–3333.
11. Shigeeda H., Morimoto H,. Ito K., et al. Feeding-loss Reduction by Higher-voltage DC Railway Feeding System with DC to DC Converter. – 2018 International Power Electronics Conference. IPEC-Niigata - ECCE Asia 2018, pp. 2540–2546.
12. Skorokhod Yu., Philin D., Volskiy S. Analysis of High-Voltage Converters with Serial Connection Units and with Input Current Correction. – 21st International Scientific Conference on Electric Power Engineering (EPE), Prague, 2020, pp. 133–137.
13. Скороход Ю.Ю., Вольский С.И. Анализ высоковольтных преобразователей с повышенным качеством потребления электрической энергии. – Электричество, 2020, № 10, с. 44–51.
14. Volskiy S., Scorokhod Yu. The Analysis and Simulation of Power Circuits for AC High Voltage Converter. – Conference proceedings PEDS-07, Banking, Thailand, 2007, pp. 1741–1747.
15. IEC 62236-3-1:2008. Electromagnetic compatibility of technical equipment. Railway systems and equipment. Part 3-1. Railway rolling stock. Requirements and test methods.
16. ГОСТ32144-2013. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения.
17. Мелешин В.И. Транзисторная преобразовательная техника. Техносфера, 2005, 632 с.
18. Гельман M.В., Дудкин M.M., Преображенский K.A. Преобразовательная техника. Челябинск: Издательский центр ЮУрГУ, 2009, 425 с.
19. Choi J., Kim J.-S., Lee G., et al. Cascaded DC-to-DC Converter Employing a Tapped-inductor for High Voltage Boosting Ratio. – IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, 2015, pp. 932–937.
20. Маклиман В.T. Проектирование трансформаторов и дросселей. ДМК, 2016, 475 с.
#
1. GOST 9219-88. Tractive electrical apparatus. General technical requirements. M.: Izdatel'stvo standartov, 1988, 36 р.
2. Skorokhod Yu., Volskiy S., Antushev N., et al. Novel algorithm to protect converter from impulsive overvoltages by using neural networks. – PCIM2020, Nurnberg, 2020, pp. 1079–1085.
3. Mileshin V., Zhiklenkov D., Gan'shin A. Three-level step-up voltage converter. – Power electronics, 2015, No. 2, pp. 59–65.
4. Volskiy S., Skorokhod Y. Analysis of high-voltage converters with serial connection units and with input current correction. – 21st International Scientific Conference on Electric Power Engineering (EPE), Prague, 2020, pp. 133–137.
5. Meleshin V.I., Ovchinnikov D.A. Control of transistor energy converters. – Technosphere, 2011, 411 p.
6. Zinoviev G.С. Power electronics. М.: Yureit, 2015, 668 p.
7. Skorokhod Y., Sorokin D., Volskiy S. Development of the control system for three phase power factor corrector. – PCIM2019, Nurnberg, 2019, pp. 1813–1819.
8. Makarov S.N., Stephen R.L., Bitar J. Practical Electrical Engi-neering. Worcester Polytechnic Institute, Washington, USA, 2016, 986 p.
9. Popkov O.Z. Fundamentals of conversion technology. M.: MEI, 2010, 200 p.
10. Sepehr A., Saradarzadeh M., Farhangi S. High-voltage Iso-lated Multioutput Power Supply for Multilevel Converters. – Turkish Journal of Electrical Engineering and Computer Science, 2017, vol. 25(4), pp. 3319–3333.
11. Shigeeda H., Morimoto H,. Ito K., et al. Feeding-loss Re-duction by Higher-voltage DC Railway Feeding System with DC to DC Converter. – 2018 International Power Electronics Conference. IPEC-Niigata - ECCE Asia 2018, pp. 2540–2546.
12. Skorokhod Yu., Philin D., Volskiy S. Analysis of High-Voltage Converters with Serial Connection Units and with Input Current Correction. – 21st International Scientific Conference on Electric Power Engineering (EPE), Prague, 2020, pp. 133–137.
13. Skorokhod Yu.Yu., Volsky S.I. Analysis of high voltage converters with improved power consumption quality. – Electricity, No. 10, 2020, pp. 44–51.
14. Volskiy S., Scorokhod Yu. The Analysis and Simulation of Power Circuits for AC High Voltage Converter. – Conference proceedings PEDS-07, Banking, Thailand, 2007, рр. 1741–1747.
15. IEC 62236-3-1:2008. Electromagnetic compatibility of tech-nical equipment. Railway systems and equipment. Part 3-1. Railway rolling stock. Requirements and test methods.
16. GOST32144-2013. Electric energy. Electromagnetic compatibility of technical equipment. Power quality limits in the public power supply systems.
17. Meleshin V.I. Transistor converter technology. Technosphere, 2005, 632 p.
18. Gelman M.V., Dudkin M.M., Preobrazhensky K.A. Conver-ters technique. Chelyabinsk: Izdatel'skiy tsentr YuUrGU, 2009, 425 p.
19. Choi J., Kim J.-S., Lee G., et al. Cascaded DC-to-DC Con-verter Employing a Tapped-inductor for High Voltage Boosting Ratio. – IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, 2015, pp. 932–937.
20. McLyman Wm.T. Transformer and Inductor Design. DMK, 2016, 475 p.
Published
2021-05-30
Section
Article