Modeling the Temperature Mode, Monitoring, and Predicting the Overheating Live Bus Bolted Contact Connections
Abstract
The widely used infrared imaging control of bolted connections in live rectangular buses is performed without direct access to the object being diagnosed. This gives only an approximate idea of the contact state, whereas the contact layer condition remains poorly known. The high thermal conductivity of the live bus material makes the thermal field pattern near the contact connection rather soft, which significantly adds complexity to the diagnostics. Therefore, it is important to develop diagnostics of contact connections by dynamic methods based on analyzing the thermal effect of rectangular test or quasi-rectangular operational current pulses in the busbars of electrical installations. By analyzing the temperature field dynamics in the flat contact zone it becomes possible to establish a functional relationship between the contact zone temperature and the bus free surface temperature, and also the relationship between the temperature recorded on the bus surface and the transition resistance, which is the contact quality characteristic. It has been shown, by simulating the contact surface temperature control in the dynamic monitoring mode, that it is possible to determine the rectangular bus bolted connection overheating protection response time. It is proposed to use the obtained dependence as a conversion function for an intelligent electrical contact temperature sensor.
References
2. Marketz J. Polster M. Muhr. Maintenance Strategies for Distribution Networks. – Proc. 14th International Symposium on High Voltage Engineering, Beijing, 2005, F–55.
3. Овсянников А.Г. Стратегии ТОиР и диагностика оборудования. – Новости электротехники, 2008, № 2 (50), с.140–142.
4. Wolfgang D. Discussion Meeting Summary for Group B3. CIGRE Session. Paris, 2004.
5. Smith J.J. Trends in PD-diagnostics for Asset Management of Aging HV Infrastructures. – Proc. 14th International Symposium on High Voltage Engineering, Beijing, 2005, K–05.
6. Положение ПАО “Россети” о единой технической политике в электросетевом комплексе. М., 2017, 196 с.
7. Положение о технической политике ОАО “ФСК ЕЭС”. М., 2011, 147 с.
8. Титков В.В., Бекбаев А.Б., Сарсенбаев Е.А. О возможностях мониторинга нестационарных тепловых процессов в контактах силовых электроустановок. – Научно-технические ведомости Cанкт-Петербургского государственного политехнического университета, 2017, т. 23, № 1, c.162–172.
9. Энергетическая стратегия России на период до 2030 года, утв. распоряжением Правительства Российской Федерации от 13 ноября 2009 г. №1715-р.
10. Сайт компании ABB [Электрон. ресурс] URL:http://www.abb.ru (дата обращения 15.06.2021).
11. Сайт компании Димрус [Электрон. ресурс] URL: http:// www.dim-rus.ru (дата обращения 15.06.2021).
12. Назарычев А.Н., Таджибаев А.И., Сухичев М.И., Титков В.В. Критерии оценки состояния контактных соединений при тепловизионной диагностике электрооборудования. – Энергоэксперт, 2013, №2 (37), с. 58–61.
13. Сухичев М.И., Титков В.В. К вопросу о тепловой диагностике контактных соединений. – Электро, 2010, №3, с. 37–39.
14. Иванов-Смоленский А.В. Электрические машины: т. 2. М.: Издательский дом МЭИ, 2006, 532 с.
15. ГОСТ Р 52565–2006. Выключатели переменного тока на напряжение от 3 до 750 кВ. М.: Стандартинформ, 2007, 86 с.
16. ГОСТ Р 52736–2007. Короткие замыкания в электроустановках. Методы расчета электродинамического и термического действия тока короткого замыкания. М.: Стандартинформ, 2007, 40 с.
17. Годжелло А.Г., Панков Н.К., Гринберг Р.П. Модели старения неразъёмных алюминиевых контактных соединений. – Электротехника, 2002, №2, c. 47–49.
18. Пат. РФ № 2635385 от 13 ноября 2017 г. Способ определения времени срабатывания защиты токоведущих контактных соединений коммутационных аппаратов от перегрева.
19. Bekbaev A.B., Sarsenbayev E.A., Titkov V.V. On the Possibilities of Dynamic Evaluation of Contact Surface Temperature under Impulse-Current Loads. – Russian Electrical Engineering, 2017, vol. 88, No. 5, pp. 274–279.
20. Сарсенбаев Е.А. Динамический мониторинг и прогнозирование перегрева труднодоступных контактных элементов электрооборудования технологических комплексов. Дис. … докт. философии (PhD), Алматы, 2017, 149с. [Электрон. ресурс] URL: htps://docplayer.ru/70617824-Sarsenbaev-erlan-aliaskarovich-6d-elek-troenergetika.html (дата обращения 12.07.2021).
#
1. On approval of the Concept for the development of the fuel and energy complex of the Republic of Kazakhstan until 2030. Resolution of the Government of the Republic of Kazakhstan dated June 28, 2014 No. 724.
2. Marketz J. Polster M. Muhr. Maintenance Strategies for Distribution Networks. – Proc. 14th International Symposium on High Voltage Engineering, Beijing, 2005, F–55.
3. Ovsyannikov A.G. Novosti elektrotekhniki – in Russ. (Electrical engineering news), 2008, No. 2 (50), pp.140–142.
4. Wolfgang D. Discussion Meeting Summary for Group B3. CIGRE Session. Paris, 2004.
5. Smith J.J. Trends in PD-diagnostics for Asset Management of Aging HV Infrastructures. – Proc. 14th International Symposium on High Voltage Engineering, Beijing, 2005, K–05.
6. Polozhenie PAO “Rosseti” o edinoy tekhnicheskoy politike v elektrosetevom komplekse (The regulation of PJSC "ROSSETI" on the unified technical policy in the electric grid complex). М., 2017, 196 p.
7. Polozhenie o tekhnicheskoy politike OAO “FSK EES” (Regulations on the Technical Policy of JSC FGC UES). М., 2011,
147 p.
8. Titkov V.V., Bekbaev A.B., Sarsenbaev E.A. Nauchno-tekhnicheskie vedomosti Cankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta – in Russ. (Scientific and Technical Bulletin of the St. Petersburg State Polytechnic University), 2017, vol. 23, No. 1, pp.162–172.
9. Energeticheskaya strategiya Rossii na period do 2030 goda, utv. rasporyazheniem Pravitel'stva Rossiyskoy Federatsii ot 13 noyabrya 2009 g. №1715-r (The Energy Strategy of Russia for the period up to 2030, approved by the Decree of the Government of the Russian Federation No. 1715-r of November 13, 2009).
10. ABB website [Electron resource] URL:http://www.abb.ru (Date of аppeal 15.06.2021).
11. Dimrus website [Electron resource] URL: http:// www.dimrus.ru (Date of аppeal 15.06.2021).
12. Nazarychev A.N., Tadjibaev A.I., Sukhichev M.I., Titkov V.V. Energoekspert – in Russ. (Energoexpert), 2013, No. 2 (37), pp. 58–61.
13. Sukhichev M.I., Titkov V.V. Elektro – in Russ. (Electro), 2010, No. 3, pp. 37–39.
14. Ivanov-Smolensky A.V. Elektricheskie mashiny (Electric machines): vol. 2. М.: Izdatel'skiy dom MEI, 2006, 532 p.
15. GOST R 52565-2006. Vyklyuchateli peremennogo toka na napryazhenie ot 3 do 750 kV (AC switches for voltage from 3 to 750 kV). M.: Standartinform, 2007, 86 p.
16. GOST R 52736-2007. Korotkie zamykaniya v elektroustanov-kah. Metody rascheta elektrodinamicheskogo i termicheskogo deystviya toka korotkogo zamykaniya (Short circuits in electrical installations. Methods for calculating the electrodynamic and thermal effects of short-circuit current). M.: Standartinform, 2007, 40 p.
17. Godzhello A.G., Pankov N.K. Greenberg R.P. Elektrotekhni-ka – in Russ. (Electrical Engineering), 2002, No. 2, pp. 47–49.
18. Patent. RF No. 2635385 of November 13, 2017. Sposob opredeleniya vremeni srabatyvaniya zashchity tokovedushchih kontaktnyh soedineniy kommutatsionnyh apparatov ot peregreva (Method for determining the response time of protection of current-carrying contact connections of switching devices from overheating).
19. Bekbaev A.B., Sarsenbayev E.A., Titkov V.V. On the Possibilities of Dynamic Evaluation of Contact Surface Temperature under Impulse-Current Loads. – Russian Electrical Engineering, 2017, vol. 88, No. 5, pp. 274–279.
20. Sarsenbaev E.A. [Electron resource] URL: htps://docplayer.ru/70617824-Sarsenbaev-erlan-aliaskarovich-6d-elektroenergetika.html (Date of appeal 12.07.2021).