Magnetic Reducing Gear's Electromagnetic Torques

  • Aleksander A. AFANAS'YEV
Keywords: magnetic reducing gear, three-phase winding, permanent magnets, reduction coefficient, modulator permeance

Abstract

The article considers a magnetic reducing gear (MRG) with a threephase winding on its stator, which is fed by a static frequency converter in the form of a sinewave current that is in co or counterphase with the winding noload EMF. When being set to operate in this mode, the MRG will produce the maximal values of shaft electromagnetic torques proportional to the stator current. Such reducing gear will be free from rotor stalling phenomena as long as the frequency converter is able to increase its current with a growth of load. The electromagnetic torques of the MRG rotors (with adjustable and nonadjustable reduction coefficients) are due to the stator electromagnetic torque and are rigidly linked with it via constant coefficients. All three torques produced by an MRG with a frequency converter are directly proportional to the stator winding active current. If there is no stator winding active current, the electromagnetic torques produced by the stator and rotors are equal to zero. The electrical channel of such reducing gear can operate as a motor and generator; it can also impart the synchronous condenser properties to the reducing gear.Analytical formulas for calculating the electromagnetic torques of reducing gears with adjustable and nonadjustable reduction coefficients, which have a similar form, are proposed. Experimental values of electromagnetic torques have been obtained for the mockup samples of both reducing gear types and compared with the analytical and numerical analysis data.

Author Biography

Aleksander A. AFANAS'YEV

AFANAS'YEV Aleksander A. (Chuvash State University, Cheboksary, Russia) – Professor, Dr. Sci. (Eng.)

References

Афанасьев А.А. Аналитические и численные методы решения задач электромеханики на основе комплексного магнитного потенциала. Чебоксары: Изд!во Чувашского университета, 2017, 430 с.

Atallah K. and Howe D. A novel high-performance magnetic gear. — IEEE Transactions on Magnetics, 2001, vol. 37, No. 4, pp. 2844-2846.

Rasmussen P.O., Mortensen H.H., Matzen T.N., Jahns T.M., Toliyat H.A. Motor integrated permanent magnet gear with a wide torque-speed range. — ECCE 2009, pp. 1510 — 1518.

Важнов А.И. Переходные процессы в машинах переменного тока. Л.: Энергия, 1980, 256 с.

Аракелян А.К., Афанасьев А.А., Чиликин М.Г. Вентильный электропривод с синхронным двигателем и зависимым инвертором. М.: Энергия, 1977, 224 с.

Афанасьев А.А., Дмитренко А.М., Ефимов В.В. Магнитная проводимость модулятора магнитного редуктора. — Электротехника, 2017, № 7, c. 11—14.

Иванов-Смоленский А.В. Электромагнитные силы и преобразование энергии в электрических машинах. М.: Высшая школа, 1989, 312 с.
#
Afanas’yev A.A. Analiticheskiye i chislennye metody resheniya zadach elektromekhaniki na osnove kompleksnogo magnitnogo potentsiala (Analytic and numerical methods for solving electromechanical problems on the basis of complex magnetic potential). Cheboksary, Chuvash University, 2017, 430 p.

Atallah K. and Howe D. A novel high-performance magnetic gear. — IEEE Transactions on Magnetics, 2001, vol. 37, No. 4, pp. 2844-2846.

Rasmussen P.O., Mortensen H.H., Matzen T.N., Jahns T.M., Toliyat H.A. Motor integrated permanent magnet gear with a wide torque-speed range. - ECCE 2009, pp. 1510 - 1518.

Vazhnov A.I. Perekhodnye protsessy v mashinakh peremennogo toka (Valve electric drives with a synchronous motor and grid-controlled inverter). Leningrad, 1980, 256 p.

Arakelyan A.K., Afanas’yev A.A., Chilikin M.G. Ventil'nyi elektroprivod s sinkhronnym dvigatelem i zavisimym invertorom (Valve electric drive with synchronous motor and dependent inverter). Moscow, Energiya, 1977, 224 p.

Afanas’yev A.A., Dmitrenko A.M., Yefimov V.V. Elektrotekhnika — in Russ. (Electrical Engineering), 2017, No. 7, pp. 11-14.

Ivanov-Smolenskiy A.V. Elektromagnitnye sily ipreobrazovaniye energii v elektricheskikh mashinakh (Electromagnetic forces and energy c
Published
2019-02-21
Section
Article