A Pulse High-Voltage Overvoltage Simulator

  • Sergey I. VOLSKIY
  • Alexander S. KORNEV
  • Yuriy Yu. SKOROKHOD
  • Ilya P. VIKULOV
Keywords: pulse high-voltage overvoltage simulator, high-voltage power converter, emergency mode, direct current

Abstract

The electrical circuit of a simulator of pulse high voltage overvoltages with an amplitude of up to 10 kV DC, which is intended for testing the stability of solid-state power converters to emergency conditions according to item 4.9.3.5 of State Standard GOST 33726-2016, is proposed. By using the developed simulator, a high voltage pulse with the required values of amplitude, duration, and rising and falling rates can be obtained. Analytical expressions are derived that describe, with sufficient accuracy, the transients in the electrical circuits of the proposed pulse high voltage overvoltage simulator, which is confirmed by computer simulation carried out in the MATLAB Simulink environment. Based on the obtained theoretical results, a mockup simulator for testing the stability of a high-voltage power converter to overvoltage of a given shape and amplitude has been developed. The results of practical use of the developed simulator on the example of testing the PSN110 U1 auxiliary converter are given. The article may be of interest to specialists who design equipment for carrying out overvoltage tests of solid-state high-voltage converters for both railway transport and industrial applications.

Author Biographies

Sergey I. VOLSKIY

(Moscow Aviation Institute (the National Research University), Moscow, Russia) – Professor of the Electrical Power, Electromechanics and Biotechnical Systems Dept., Dr. Sci. (Eng.)

Alexander S. KORNEV

(St. Petersburg State Marine Technical University, St. Petersburg, Russia) – Professor of the Electrical Engineering and Electrical Equipment of Ships Dept., Dr. Sci. (Eng.)

Yuriy Yu. SKOROKHOD

(Transconverter LLC, Moscow, Russia) – Head of the Design Office

Ilya P. VIKULOV

(Emperor Alexander I St. Petersburg State Transport University, St. Petersburg, Russia) – Docent of the Electric Traction dept., Cand. Sci. (Eng.)

References

1. Шваб А.Й. Электромагнитная совместимость. М.: Энергоатомиздат, 1995, 480 с.
2. Гурвич И.С. Защита ЭВМ от внешних помех. М.: Энергоатомиздат, 1981, 224 с.
3. Воршевский А.А. Обеспечение электромагнитной совместимости технических средств по импульсным помехам в судовых электрических системах: дис. … докт. техн. наук, 2007, 507 с.
4. ТР ТС 001/2011. Технический регламент ТС "О безопасности железнодорожного подвижного состава", 2011.
5. ГОСТ 33726-2016. Преобразователи статические нетяговые для железнодорожного подвижного состава. М.: Стандартинформ, 2016, 26 с.
6. Makarov S.N., Stephen R.L., Bitar J. Practical Electrical Engineering. Washington, USA: Worcester Polytechnic Institute, 2016, 986 p.
7. Sepehr A., Saradarzadeh M., Farhangi S. High-voltage Isolated Multioutput Power Supply for Multilevel Converters. – Turkish Journal of Electrical Engineering and Computer Science, 2017, vol. 25(4), pp. 3319–3333.
8. Вольский С.И. и др. Преобразователь собственных нужд ПСН110 У1 для электропоезда ЭП2Д. – Вестник Всероссийского научно-исследовательского и проектно-конструкторского института электровозостроения, 2017, № 1 (75), c. 12– 21.
9. Volskiy S., Skorokhod Y. Analysis of high-voltage converters with serial connection units and with input current correction. – 21st International Scientific Conference on Electric Power Engineering (EPE), Prague, 2020, pp. 133–137.
10. Бессонов Л.А., Бессонов В.Л. Теоретические основы электротехники. Электрические цепи. М.: Юрайт, 2019, 831 с.
11. Потапов Л.А. Теоретические основы электротехники. СПб.: Лань, 2016, 376 с.
12. Евсеев М.Е. Теоретические основы электротехники. СПб.: Политехника, 2008, 320 с.
13. Дементьев Ю.Н., Терёхин В.Б. Компьютерное моделирование систем электропривода постоянного и переменного тока в Simulink. М.: Юрайт, 2019, 306 с.
14. Дементьев Ю.Н. и др. Компьютерное моделирование электротехнических систем постоянного и переменного тока в среде Matlab Simulink. Томск: Изд-во ТПУ, 2018, 497 с.
15. Терехин В.В. Основы моделирования в MATLAB. Часть 2. Simulink. Новокузнецк: Кузбассвузиздат, 2004, 376 с.
#
1. Shvab А.Y. Elektromagnitnaya sovmestimost' (Electromagnetic Compatibility). М.: Energoatomizdat, 1995, 480 p.
2. Gurvich I.S. Zashchita EVM ot vneshnih pomekh (Protection of Computers from External Interference). М.: Energoatomizdat, 1981, 224 p.
3. Vorshevskiy А.А. Obespechenie elektromagnitnoy sovmesti-mosti tekhnicheskih sredstv po impul'snym pomekham v sudovyh elektricheskih sistemah: dis. … dokt. tekhn. nauk (Ensuring Electromagnetic Compatibility of Technical Means for Pulse Interference in Ship Electrical Systems: Dis… Dr. Sci. (Eng.)), 2007, 507 p.
4. ТR ТS 001/2011. Tekhnicheskiy reglament TS "O bezopasnosti zheleznodorozhnogo podvizhnogo sostava" (Technical Regulations TS "On the safety of Railway rolling stock"), 2011.
5. GОSТ 33726-2016. Preobrazovateli staticheskie netyagovye dlya zheleznodorozhnogo podvizhnogo sostava (Static Non-Tractive Converters for Railway Rolling Stock). М.: Standartinform, 2016, 26 p.
6. Makarov S.N., Stephen R.L., Bitar J. Practical Electrical En-gineering. Washington, USA: Worcester Polytechnic Institute, 2016, 986 p.
7. Sepehr A., Saradarzadeh M., Farhangi S. High-voltage Isolated Multioutput Power Supply for Multilevel Converters. – Turkish Journal of Electrical Engineering and Computer Science, 2017, vol. 25(4), pp. 3319–3333.
8. Volskiy S.I., et al. Vestnik Vserossiyskogo nauchno-issledo-vatel'skogo i proektno-konstruktorskogo instituta elektrovozostroeniya – in Russ. (Bulletin of the All-Russian Research and Design Institute of Electric Locomotive Construction), 2017, No. 1 (75), pp. 12– 21.
9. Volskiy S., Skorokhod Y. Analysis of high-voltage converters with serial connection units and with input current correction. – 21st International Scientific Conference on Electric Power Engineering (EPE), Prague, 2020, pp. 133–137.
10. Bessonov L.A., Bessonov V.L. Teoreticheskie osnovy elektro-tekhniki. Elektricheskie tsepi (Theoretical Foundations of Electrical Engineering. Electric Circuits). М.: Yurayt, 2019, 831 p.
11. Potapov L.А. Teoreticheskie osnovy elektrotekhniki (Theore-tical Foundations of Electrical Engineering). SPb.: Лань, 2016, 376 p.
12. Евсеев М.Е. Teoreticheskie osnovy elektrotekhniki (Theore-tical Foundations of Electrical Engineering). SPb.: Politekhnika, 2008, 320 p.
13. Dementiev Yu.N., Terekhin V.B. Komp'yuternoe modelirova-nie sistem elektroprivoda postoyannogo i peremennogo toka v Simulink (Computer Modeling of DC and AC Electric Drive Systems in Simulink). М.: Yurayt, 2019, 306 p.
14. Dementiev Yu.N., et al. Komp'yuternoe modelirovanie elektro-tekhnicheskih sistem postoyannogo i peremennogo toka v srede Matlab Simulink (Computer Modeling of Electrical Systems of Direct and Alternating Current in the Matlab Simulink Environment). Тоmsk: Izd-vo ТPU, 2018, 497 p.
15. Terekhin V.V. Osnovy modelirovaniya v MATLAB. Chast' 2. Simulink (Basics of Modeling in MATLAB. Part 2. Simulink). Novokuznetsk: Kuzbassvuzizdat, 2004, 376 p.
Published
2021-06-26
Section
Article