Simulating the Operation Modes of a Trolleybus Traction Switched Reluctance Electric Drive

  • Viktor N. ANTIPOV
  • Andrey D. GROZOV
  • Anna V. IVANOVA
Keywords: switched reluctance motor, computer simulation, designing, public transport

Abstract

The results from development and simulation of a switched reluctance motor for a trolleybus traction drive are discussed. The project is based on the motor modular designing principles, and the 180 kW
TAD-3 induction motor with which trolleybuses are currently equipped serves as a prototype. The switched reluctance motor’s parameters were obtained from a numerical analysis of the magnetic field using the ELCUT computer program and have been embedded into the MATLAB/Simulink model of the motor developed for the 12/8 stator poles to rotor teeth ratio. The modeling makes it possible to improve the design procedure, rationally select the control parameters, and obtain the dynamics of changes in the motor main parameters in various modes of its operation. The dependences of the phase current r.m.s. value and the mean torque on the control parameters, as well as the change in the trolleybus motor rotational speed in the constant power mode are investigated. The proposed switched reluctance motor design version supports all modes of operation according to the trolleybus standard motion diagram in the case of its being equipped with the TAD-3 induction traction motor. In using a reluctance adjustable drive in urban transport vehicles, savings up to 30% of active materials are achieved; only readily available and inexpensive materials are used, and the motor design is well amenable to mass scale production with low labor intensity (the magnetic system has a simple configuration; the motor does not have a commutator, squirrel cage, and permanent magnets, and its coils are machine-wound).

Author Biographies

Viktor N. ANTIPOV

(I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, Russia) – Leading Researcher, Dr. Sci. (Eng.).

Andrey D. GROZOV

(I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, Russia) – Research Associate.

Anna V. IVANOVA

(I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, Russia) – Senior Researcher, Cand. Sci. (Eng.).

References

1. Lawrenson P.J., et al. Variable-Speed Switched Reluctance Motors. – IEEE Proc. B Power Applications, 1980, vol. 127, No. 4, pp. 253–265.
2. Miller T.J.E. Switched Reluctance Motors and Their Control. London: Magna Physics Publishing and Oxford University Press, 1993, 200 p.
3. Krishnan R. Switched Reluctance Motor Drives. Boca Raton: CRC Press, 2001, 432 p., DOI: https://doi.org/10.1201/9781420041644.
4. Кузнецов В.А., Кузьмичев В.А. Вентильно-индукторные двигатели. М.: Изд-во МЭИ, 2003, 71 с.
5. Miller T.J.E. Optimal Design of switched reluctance motors. – IEEE Trans. on Industrial Electronics, 2002, vol. 49, No. 1, pp. 15–27.
6. Птах Г.К. Вентильно-индукторный реактивный электропривод средней и большой мощности: зарубежный и отечественный опыт. – Электротехника: сетевой электронный научный журнал, 2015, т. 2, № 3, с. 23–33.
7. Антипов В.Н., Грозов А.Д., Иванова А.В. Исследование характеристик базовых вентильно-индукторных электродвигателей тягового привода городского электротранспорта. – Электричество, 2016, № 10, с. 45–52.
8. Rahman K. M. et al. Advantages of Switched Reluctance Motor Applications to EV and HEV: Design and Control Issues. – IEEE Trans. on Industry Applications, 2000, vol. 36 (1), pp. 111–121.
9. Kiyota K., Chiba A. Design of Switched Reluctance Motor Competitive to 60-kW IPMSM in Third-Generation Hybrid Electric Vehicle. – IEEE Trans. Industry Appl., 2012, vol. 48, No. 6, pp. 2303–2309.
10. Takeno M., et al. Test Results and Torque Improvement of the 50-kW Switched Reluctance Motor Designed for Hybrid Electric Vehicles. – IEEE Trans. on Industry Appl., 2012, vol. 48 (4), pp. 1327–1334.
11. Andrada P., et al. Switched Reluctance Motor Controller for Light Electric Vehicles. – Proc. 2018 European Conf. on Power Electronics and Appl., 2018, pp. 1–9.
12. Soares F., Costa Blanco P.J. Simulation of a 6/4 Switched Reluctance Motor Based on Matlab/Simulink Environment. – IEEE Transaction on Aerospace and Electronic Systems, 2001, vol. 37, No. 3, pp. 989–1009.
13. Chancharoensook P., Rahman M.F. Dynamic Modelling of a Four-Phase 8/6 Switched Reluctance Motor Using Current and Torque Look-up Tables. – IEEE Annual Conf. of the Industrial Electronics Society, 2002, vol. 1, pp. 491–496.
14. Matveev A., et al. Two Approaches for Modeling of Switched Reluctance Drives. – Proc. 2003 European Conf. on Power Electronics and Appl., 2003, 10 p.
15. Антипов В.Н., Грозов А.Д., Иванова А.В. Исследование моделей вентильно-индукторного двигателя. – Электричество, 2018, № 6, с. 60–65.
---
Работа выполнена при финансовой поддержке гранта РФФИ, проект № 20-08-00386.
#
1. Lawrenson P.J., et al. Variable-speed switched reluctance motors. – IEEE Proc. B Power Applications, 1980, vol. 127, No. 4,
pp. 253–265.
2. Miller T.J.E. Switched reluctance motors and their control. London: Magna Physics Publishing and Oxford University Press, 1993, 200 p.
3. Krishnan R. Switched Reluctance Motor Drives. Boca Raton: CRC Press, 2001, 432 p., DOI: https://doi.org/10.1201/9781420041644.
4. Кuznetsov V.А., Кuz’michyov V.А. Ventil'no-induktornye dvigateli (Valve-Inductor Motors). М.: Izd-vo MEI, 2003, 71 p.
5. Miller T.J.E. Optimal Design of switched reluctance motors. – IEEE Trans. on Industrial Electronics, 2002, vol. 49, No. 1, pp. 15–27.
6. Ptah G.К. Elektrotekhnika: setevoy elektronnyy nauchnyy zhurnal – in Russ. (Russian Internet Journal of Electrical Engeneering), 2015, vol. 2, No. 3, pp. 23–33.
7. Antipov V.N., Grozov A.D., Ivanova A.V. Elektrichestvo – in Russ. (Electricity), 2016, No. 10, pp. 45–52.
8. Rahman K. M. et al. Advantages of switched reluctance motor applications to EV and HEV: design and control issues. – IEEE Trans. on Industry Applications, 2000, vol. 36 (1), pp. 111–121.
9. Kiyota K., Chiba A. Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle. – IEEE Trans. Industry Appl., 2012, vol. 48, No. 6, pp. 2303–2309.
10. Takeno M., et al. Test Results and Torque Improvement of the 50-kW Switched Reluctance Motor Designed for Hybrid Electric Vehicles. – IEEE Trans. on Industry Appl., 2012, vol. 48 (4), pp. 1327–1334.
11. Andrada P., et al. Switched Reluctance Motor Controller for Light Electric Vehicles. – Proc. 2018 European Conf. on Power Electronics and Appl., 2018, pp. 1–9.
12. Soares F., Costa Blanco P.J. Simulation of a 6/4 Switched Reluctance Motor Based on Matlab/Simulink Environment. – IEEE Transaction on Aerospace and Electronic Systems, 2001, vol. 37, No. 3, pp. 989–1009.
13. Chancharoensook P., Rahman M.F. Dynamic Modelling of a Four-Phase 8/6 Switched Reluctance Motor Using Current and Torque Look-up Tables. – IEEE Annual Conf. of the Industrial Electronics Society, 2002, vol. 1, pp. 491–496.
14. Matveev A., et al. Two Approaches for Modeling of Switched Reluctance Drives. – Proc. 2003 European Conf. on Power Electronics and Appl., 2003, 10 p.
15. Antipov V.N., Grozov A.D., Ivanova A.V. Elektrichestvo – in Russ. (Electricity), 2018, No. 6, pp. 60–65.
---
The work was carried out with the financial support of the RFBR Grant, Project No. 20-08-00386.
Published
2021-01-19
Section
Article