Two-Channel Bridgeless Power Factor Corrector

  • Yuriy F. VAGAPOV
  • Alexander I. CHIVENKOV
  • Dmitriy A. ALESHIN
Keywords: rectifier, power factor corrector, DC/DC converter, inverting converter, power supply ground, total harmonic distortion

Abstract

This paper discusses the analysis and design details of a bridgeless power factor corrector. The circuit topology of the proposed power converter is based on the combination of two DC/DC converters forming a two-channel structure of the power processing path. To meet the safety requirements, the converter circuit is equipped with a common ground link between the AC input voltage source and the DC output. The two-channel bridgeless power factor corrector operates under a power factor close to one and is robust to a short circuit fault. The resonance mode of the converter circuit prevents unpredictable overvoltage across the converter semiconductors. The device was modelled and simulated using MATLAB/Simulink software environment under varying load conditions. The results of numerical investigations have confirmed predicted device performance parameters and operational characteristics. The paper content will attract the attention of researchers and engineers working in the areas of electrical power engineering and power supplies.

Author Biographies

Yuriy F. VAGAPOV

(Glyndwr University, Wrexham, United Kingdom) – Lecturer in Electrical Engineering, Faculty of Art, Science and Technology, PhD.

Alexander I. CHIVENKOV

(Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia) – Professor of the Theoretical and General Electrical Engineering Dept., Dr. Sci. (Eng).

Dmitriy A. ALESHIN

(Nizhny Novgo-rod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia) – Postgraduate Student of the Theoretical and General Electrical Engineering Dept.

References

1. Pourmahdi M., et al. Buck–Boost Common Ground Bridgeless PFC (CGBPFC) Rectifies with Positive/Negative Output. – IEEE Transactions on Power Electronics, 2022, vol. 37, No. 2, pp. 1272–1282, DOI: 10.1109/TPEL.2021.3107364.
2. Кук С. Безмостовой преобразователь корректора коэффициента мощности с КПД до 98 % и КМ 0,999. Часть 3. – Электронные компоненты, 2011, № 2, c. 48–57.
3. Basu S., Undeland T.M. Inductor Design Considerations for optimizing performance & cost of Continuous Mode Boost PFC Converters. – IEEE Applied Power Electronics Conf., 2005. pp. 1133–1138.
4. Lin X., et al. A Novel Bridgeless Cuk PFC Converter with Further Reduced Conduction Losses and Simple Circuit Structure. – IEEE Transactions on Industrial Electronics, 2021, vol. 68, No. 11, pp. 10699–10708, DOI: 10.1109/TIE.2020.3031527.
5. Choi W.Y., Kwon J.M., Kwon B.H. Bridgeless dual-boost rectifier with reduced diode reverse-recovery problems for power-factor correction. – IET Power Electron., 2008, vol. 1, No. 2, pp. 194–202.
6. Kim Y.S., Sung W.Y., Lee B.K. Comparative performance analysis of high density and efficiency PFC topologies. – IEEE Trans. Power Electron., 2014, vol. 29, No. 6, pp. 2666–2679.
7. Mahdavi M., Farzaneh-fard H. Bridgeless CUK power factor correction rectifier with reduced conduction losses. – IET Power Electron., 2012, vol. 5, iss. 9, pp. 1733–1740.
8. Yang J.W., Do H.L. Bridgeless SEPIC converter with a ripple-free input current. – IEEE Trans. Power Electron., 2013, vol. 28, No. 7, pp. 3388–3394.
9. Sabzali A.J., et al. New bridgeless DCM SEPIC and Cuk PFC rectifiers with low conduction and switching losses. – IEEE Trans. Ind. Appl., 2011, vol. 47, No. 2, pp. 873–881.
10. Huber L., Jang Y., Jovanovic M.M. Performance evaluation of bridgeless PFC boost rectifiers. – IEEE Trans. Power Electron., 2008, vol. 23, No. 3, pp. 1381–1390.
11. Ismail E.H. Bridgeless SEPIC rectifier with unity power factor and reduced conduction losses. – IEEE Trans. Ind. Electron., 2009, vol. 56, No. 4, pp. 1147–1157.
12. Mahdavi M., Farzanehfard H. Bridgeless SEPIC PFC rectifier with reduced components and conduction losses. – IEEE Trans. Ind. Electron., 2011, vol. 58, No. 9, pp. 4153–4160.
13. Singh B., Bist V. Improved power quality bridgeless cuk converter fed brushless DC motor drive for air conditioning system. – IET Power Electron., 2013, vol. 6, iss. 5, pp. 902–913.
14. Пат. RU143860U1. Сетевой выпрямитель с корректором коэффициента мощности / С.Б. Резников и др., 2014.
15. Пат. RU2541910C1. Однофазный безмостовой корректор коэффициента мощности / С.В. Дроздецкий и др., 2013.
16. Моин В.С. Стабилизированные транзисторные преобразователи. М.: Энергоатомиздат, 1986, 376 c.
17. Пат. RU189902U1. Безмостовой корректор коэффициента мощности / А.И. Чивенков, Н.Н. Вихорев, Д.А. Алешин, 2019.
18. Алешин Д.А., Вихорев Н.Н. Двухканальный безмостовой выпрямитель. – Интеллектуальная электротехника, № 4, 2019, c. 91–99.
19. Balogh L., Redl R. Power-factor correction with interleaved boost converters in continuousinductor-current mode. – IEEE Applied Power Electronics Conf., 1993, pp. 168–174.
20. Fardoun A.A., et al. New efficient bridgeless Cuk rectifiers for PFC applications. – IEEE Trans. Power Electron., 2012, vol. 27, No. 7, pp. 3292–3301.
21. Fardoun A.A., et al. A bridgeless resonant pseudo boost PFC rectifier. – IEEE Trans. Power Electron., 2014, vol. 29, No. 11, pp. 5949–5960.
22. Liu Y., Smedley K. A new passive soft-switching dual-boost topology for power factor correction. – in Proc. IEEE Power Electronics Specialists., 2003, vol. 2, pp. 669–676.
23. Mahdavi M., Farzanehfard H. Zero-voltage transition bridgeless single-ended primary inductance converter power factor correction rectifier. – IET Power Electron., vol. 7, iss. 4, 2014, pp. 895-902.
24. Salmon J.C. Circuit topologies for PWM boost rectifiers operated from 1-phase and 3-phase AC supplies and using either single or split DC rail voltage outputs. – in Proc. IEEE Applied Power Electronics Conf., 1995, vol.1, pp. 473–479.
25. Su B., Lu Z. An interleaved totem-pole boost bridgeless rectifier with reduced reverse-recovery problems for power factor correction. – IEEE Trans. Power Electron., 2010, vol. 25, No. 6, pp. 1406–1415.
#
1. Pourmahdi M., et al. Buck–Boost Common Ground Bridgeless PFC (CGBPFC) Rectifies with Positive/Negative Output. – IEEE Transactions on Power Electronics, 2022, vol. 37, No. 2, pp. 1272–1282,DOI: 10.1109/TPEL.2021.3107364.
2. Kuk S. Bridge-Less Converter of the Power Factor Corrector with Efficiency up to 98 % and KM 0.999. Part 3. – Electronic components, 2011, No. 2, pp. 48–57.
3. Basu S., Undeland T.M. Inductor Design Considerations for optimizing performance & cost of Continuous Mode Boost PFC Converters. – IEEE Applied Power Electronics Conf., 2005. pp. 1133–1138.
4. Lin X., et al. A Novel Bridgeless Cuk PFC Converter with Further Reduced Conduction Losses and Simple Circuit Structure. – IEEE Transactions on Industrial Electronics, 2021, vol. 68, No. 11, pp. 10699–10708, DOI: 10.1109/TIE.2020.3031527.
5. Choi W.Y., Kwon J.M., Kwon B.H. Bridgeless dual-boost rectifier with reduced diode reverse-recovery problems for power-factor correction. – IET Power Electron., 2008, vol. 1, No. 2, pp. 194–202.
6. Kim Y.S., Sung W.Y., Lee B.K. Comparative performance analysis of high density and efficiency PFC topologies. – IEEE Trans. Power Electron., 2014, vol. 29, No. 6, pp. 2666–2679.
7. Mahdavi M., Farzaneh-fard H. Bridgeless CUK power factor correction rectifier with reduced conduction losses. – IET Power Electron., 2012, vol. 5, iss. 9, pp. 1733–1740.
8. Yang J.W., Do H.L. Bridgeless SEPIC converter with a ripple-free input current. – IEEE Trans. Power Electron., 2013, vol. 28, No. 7, pp. 3388–3394.
9. Sabzali A.J., et al. New bridgeless DCM SEPIC and Cuk PFC rectifiers with low conduction and switching losses. – IEEE Trans. Ind. Appl., 2011, vol. 47, No. 2, pp. 873–881.
10. Huber L., Jang Y., Jovanovic M.M. Performance evaluation of bridgeless PFC boost rectifiers. – IEEE Trans. Power Electron., 2008, vol. 23, No. 3, pp. 1381–1390.
11. Ismail E.H. Bridgeless SEPIC rectifier with unity power factor and reduced conduction losses. – IEEE Trans. Ind. Electron., 2009, vol. 56, No. 4, pp. 1147–1157.
12. Mahdavi M., Farzanehfard H. Bridgeless SEPIC PFC rectifier with reduced components and conduction losses. – IEEE Trans. Ind. Electron., 2011, vol. 58, No. 9, pp. 4153–4160.
13. Singh B., Bist V. Improved power quality bridgeless cuk converter fed brushless DC motor drive for air conditioning system. – IET Power Electron., 2013, vol. 6, iss. 5, pp. 902–913.
14. Pаt. RU143860U1. Network Rectifier with Power Factor Corrector / S.B. Reznikov, et al., 2014.
15. Pаt. RU2541910C1. Single-Phase Bridge-Less Power Factor Corrector / S.V. Drozdetsky, et al., 2013.
16. Моin V.S. Stabilized Transistor Converters. М.: Energoatomiz-dat, 1986, 376 p.
17. Pаt. RU189902U1. Bridge-Less Power Factor Corrector / A.I. Chivenkov, N.N. Vikhorev, D.A. Alyoshin, 2019.
18. Alyoshin D.A., Vikhorev N.N. Two-Channel Bridge Rectifier. – Smart Electrical Engineering, No. 4, 2019, pp. 91–99.
19. Balogh L., Redl R. Power-factor correction with interleaved boost converters in continuousinductor-current mode. – IEEE Applied Power Electronics Conf., 1993, pp. 168–174.
20. Fardoun A.A., et al. New efficient bridgeless Cuk rectifiers for PFC applications. – IEEE Trans. Power Electron., 2012, vol. 27, No. 7, pp. 3292–3301.
21. Fardoun A.A., et al. A bridgeless resonant pseudo boost PFC rectifier. – IEEE Trans. Power Electron., 2014, vol. 29, No. 11, pp. 5949–5960.
22. Liu Y., Smedley K. A new passive soft-switching dual-boost topology for power factor correction. – in Proc. IEEE Power Electronics Specialists., 2003, vol. 2, pp. 669–676.
23. Mahdavi M., Farzanehfard H. Zero-voltage transition bridgeless single-ended primary inductance converter power factor correction recti-fier. – IET Power Electron., vol. 7, iss. 4, 2014, pp. 895-902.
24. Salmon J.C. Circuit topologies for PWM boost rectifiers operated from 1-phase and 3-phase AC supplies and using either single or split DC rail voltage outputs. – in Proc. IEEE Applied Power Electronics Conf., 1995, vol.1, pp. 473–479.
25. Su B., Lu Z. An interleaved totem-pole boost bridgeless rectifier with reduced reverse-recovery problems for power factor correction. – IEEE Trans. Power Electron., 2010, vol. 25, No. 6, pp. 1406–1415.
Published
2022-01-15
Section
Article