An Automatic Control System of a Power Converter Based on a Freely Configurable Virtual Synchronous Generator Structure

  • Aleksey A. SUVOROV
  • Alisher B. ASKAROV
  • Mikhail V. ANDREEV
  • Yuliy D. BAY
  • Vladimir E. RUDNIK
Keywords: renewable energy sources, distributed generation, power converter, automatic control system, virtual synchronous generator

Abstract

One of the trends in the development of modern electric power systems is a widespread use of renewable energy sources, which include a power converter through which the generating units are connected to the grid. The introduction of such installations entails problems with ensuring reliable and efficient maintenance of frequency and voltage in the grid, which are associated with the conventional approach to their control. An effective way of solving these problems is to use an alternative strategy for the control of renewable energy sources, in the framework of which many scientific groups have proposed a concept based on a virtual synchronous generator. In this case, the power converter changes from grid-following to grid-forming mode, similar to the conventional synchronous generation. However, existing approaches imply a series control system structure with a stiff direction of signals. This gives rise to fundamental problems inherent in such a structure, e.g., interdependence in control of active and reactive power. A freely configurable structure of a virtual synchronous generator is proposed for implementing a power converter automatic control system, in which its structural units and control loops can be shifted from one level to another, and the levels themselves can be located not only in series but also in parallel. It is shown that for the synthesized structure, the most effective control of frequency and voltage, as well as damping of oscillations, are provided. Results of qualitative and quantitative comparison of the proposed control system with the conventional structure of a virtual synchronous generator are presented. Experimental studies are carried out by means of mathematical modeling.

Author Biographies

Aleksey A. SUVOROV

(National Research Tomsk Polytechnic University, Tomsk, Russia) – Docent of the Division for Power and Electrical Engineering, School of Energy & Power Engineering, Cand. Sci. (Eng.)

Alisher B. ASKAROV

(National Research Tomsk Polytechnic University, Tomsk, Russia) – Postgraduate Student, Assistant of the Division for Power and Electrical Engineering, School of Energy & Power Engineering.

Mikhail V. ANDREEV

(National Research Tomsk Polytechnic University, Tomsk, Russia) – Docent of the Division for Power and Electrical Engineering, School of Energy & Power Engineering, Cand. Sci. (Eng.).

Yuliy D. BAY

(National Research Tomsk Polytechnic University, Tomsk, Russia) – Assistant of the Division for Power and Electrical Engineering, School of Energy & Power Engineering.

Vladimir E. RUDNIK

(National Research Tomsk Polytechnic University, Tomsk, Russia) – Postgraduate Student, Research Engineer of the Research and Development Laboratory «Electric Power System Simulation», School of Energy & Power Engineering.

References

1. Tielens P., Van Hertem D. The relevance of inertia in power systems. – Renewable and Sustainable Energy Reviews, 2016, vol. 55, pp. 999–1009, DOI: 10.1016/j.rser.2015.11.016.
2. Афанасьев А.А., Нудельман Г.С. Математическое моделирование эквивалентной демпферной обмотки явнополюсной синхронной машины. – Электричество, 2019, № 10, с. 34–41.
3. Ашинянц С.А. Некоторые тенденции развития мировой электроэнергетики. – Электрические станции, 2021, № 12(1085), с. 53–57.
4. Разживин И.А. и др. Оценка влияния ветроэлектростанций на изменение суммарной инерции электроэнергетической системы. – Вестник Иркутского государственного технического университета, 2021, т. 25, № 2(157), с. 220–234.
5. Li Y., Fan L., Miao Z. Wind in Weak Grids: Low-Frequency Oscillations, Subsynchronous Oscillations, and Torsional Interactions. – IEEE Transactions on Power Systems, 2020, vol. 35, No. 1, pp.109–118, DOI: 10.1109/TPWRS.2019.2924412.
6. Rathnayake D.B., et al. Grid Forming Inverter Modeling, Control, and Applications. – IEEE Access, 2021, vol. 9, pp. 114781–114807, DOI: 10.1109/ACCESS.2021.3104617.
7. Mallemaci V., et al. A comprehensive comparison of Virtual Synchronous Generators with focus on virtual inertia and frequency regulation. – Electric Power Systems Research, 2021, vol. 201, 107516, DOI: 10.1016/j.epsr.2021.107516.
8. D'Arco S., Suul J.A., Fosso O.B. A Virtual Synchronous Machine implementation for distributed control of power converters in SmartGrids. – Electric Power Systems Research, 2015, vol. 122, pp. 180–197, DOI: 10.1016/j.epsr.2015.01.001.
9. Shintai T., Miura Y., Ise T. Oscillation damping of a distributed generator using a virtual synchronous generator. – IEEE Transactions on Power Delivery, 2014, vol. 29, No. 2, pp. 668–676, DOI: 10.1109/TPWRD.2013.2281359.
10. Mandrile F., Carpaneto E., Bojoi R. Grid-Tied Inverter with Simplified Virtual Synchronous Compensator for Grid Services and Grid Support. – 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 4317–4323, DOI: 10.1109/ECCE.2019.8912266.
11. Mandrile F., Carpaneto E., Bojoi R. Grid-Feeding Inverter with Simplified Virtual Synchronous Compensator Providing Grid Services and Grid Support. – IEEE Transactions on Industry Applications, 2021, vol. 57, No. 1, pp. 559–569, DOI: 10.1109/TIA.2020.3028334.
12. Chen M., Zhou D., Blaabjerg F. Modelling, Implementation, and Assessment of Virtual Synchronous Generator in Power Systems. – Journal of Modern Power Systems and Clean Energy, 2020, vol. 8, No. 3, pp. 399–411, DOI: 10.35833/MPCE.2019.000592.
13. Yan X., Mohamed S.Y.A. Comparison of virtual synchronous generators dynamic responses. – 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), 2018, pp. 1–6, DOI: 10.1109/CPE.2018.8372573.
14. Chen Y., et al. Improving the grid power quality using virtual synchronous machines. – International Conference on Power Engineering, Energy and Electrical Drives, 2011, pp. 1–6, DOI: 10.1109/PowerEng.2011.6036498.
15. Karimi-Ghartemani M. Universal integrated synchronization and control for single-phase DC/AC Converters. – IEEE Transactions on Power Electronics, 2015, vol. 30, No. 3, pp. 1544–1557, DOI: 10.1109/TPEL.2014.2304459.
16. Beck H.-P., Hesse R. Virtual synchronous machine. – 2007 9th International Conference on Electrical Power Quality and Utilisation, 2007, pp. 1–6, DOI: 10.1109/EPQU.2007.4424220.
17. Ebrahimi M., Khajehoddin S.A., Karimi-Ghartemani M. An Improved Damping Method for Virtual Synchronous Machines. – IEEE Transactions on Sustainable Energy, 2019, vol. 10, No. 3, pp. 1491–1500, DOI: 10.1109/TSTE.2019.2902033.
18. Седойкин Д.Н., Юрганов А.А. Способ расчета частоты по мгновенным значениям напряжений в трехфазных сетях. – Известия НТЦ Единой энергетической системы, 2017, № 2(77), с. 74–77.
19. Mandrile F., Carpaneto E., Bojoi R. Virtual Synchronous Generator with Simplified Single-Axis Damper Winding. – 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), 2019, pp. 2123–2128, DOI: 10.1109/ISIE.2019.8781233.
20. Танфильев О.В., Филиппова Т.А., Танфильева Д.В. Особенности параметрирования автоматики ликвидации асинхронного хода в неполнофазных режимах. – Научный вестник Новосибирского государственного технического университета, 2018, № 2(71), с. 175–187
---
Исследование выполнено за счет гранта Российского научного фонда № 21-79-00129
#
1. Tielens P., Van Hertem D. The Relevance of Inertia in Power Systems. – Renewable and Sustainable Energy Reviews, 2016, vol. 55, pp. 999–1009, DOI: 10.1016/j.rser.2015.11.016.
2. Afanas'ev A.A., Nudel'man G.S. Elektrichestvo – in Russ. (Electricity), 2019, No. 10, pp. 34–41.
3. Ashinyants S.А. Elektricheskie stantsii – in Russ. (Electrical Power Plants), 2021, No. 12(1085), pp. 53–57.
4. Razzhivin I.А., et al. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta – in Russ. (Bulletin of Irkutsk State Technical University), 2021, vol. 25, No. 2(157), pp. 220–234.
5. Li Y., Fan L., Miao Z. Wind in Weak Grids: Low-Frequency Oscillations, Subsynchronous Oscillations, and Torsional Interacti-ons. – IEEE Transactions on Power Systems, 2020, vol. 35, No. 1, pp.109–118, DOI: 10.1109/TPWRS.2019.2924412.
6. Rathnayake D.B., et al. Grid Forming Inverter Modeling, Control, and Applications. – IEEE Access, 2021, vol. 9, pp. 114781–114807, DOI: 10.1109/ACCESS.2021.3104617.
7. Mallemaci V., et al. A comprehensive comparison of Virtual Synchronous Generators with focus on virtual inertia and frequency regulation. – Electric Power Systems Research, 2021, vol. 201, 107516, DOI: 10.1016/j.epsr.2021.107516.
8. D'Arco S., Suul J.A., Fosso O.B. A Virtual Synchronous Machine implementation for distributed control of power converters in SmartGrids. – Electric Power Systems Research, 2015, vol. 122, pp. 180–197, DOI: 10.1016/j.epsr.2015.01.001.
9. Shintai T., Miura Y., Ise T. Oscillation damping of a distributed generator using a virtual synchronous generator. – IEEE Transactions on Power Delivery, 2014, vol. 29, No. 2, pp. 668–676, DOI: 10.1109/TPWRD.2013.2281359.
10. Mandrile F., Carpaneto E., Bojoi R. Grid-Tied Inverter with Simplified Virtual Synchronous Compensator for Grid Services and Grid Support. – 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 4317–4323, DOI: 10.1109/ECCE.2019.8912266.
11. Mandrile F., Carpaneto E., Bojoi R. Grid-Feeding Inverter with Simplified Virtual Synchronous Compensator Providing Grid Services and Grid Support. – IEEE Transactions on Industry Applications, 2021, vol. 57, No. 1, pp. 559–569, DOI: 10.1109/TIA.2020.3028334.
12. Chen M., Zhou D., Blaabjerg F. Modelling, Implementation, and Assessment of Virtual Synchronous Generator in Power Systems. Journal of Modern Power Systems and Clean Energy, 2020, vol. 8, No. 3, pp. 399–411, DOI: 10.35833/MPCE.2019.000592.
13. Yan X., Mohamed S.Y.A. Comparison of virtual synchronous generators dynamic responses. – 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), 2018, pp. 1–6, DOI: 10.1109/CPE.2018.8372573.
14. Chen Y., et al. Improving the grid power quality using virtual synchronous machines. – International Conference on Power Engineering, Energy and Electrical Drives, 2011, pp. 1–6, DOI: 10.1109/PowerEng.2011.6036498.
15. Karimi-Ghartemani M. Universal integrated synchronization and control for single-phase DC/AC Converters. – IEEE Transactions on Power Electronics, 2015, vol. 30, No. 3, pp. 1544–1557, DOI: 10.1109/TPEL.2014.2304459.
16. Beck H.-P., Hesse R. Virtual synchronous machine. – 2007 9th International Conference on Electrical Power Quality and Utilisation, 2007, pp. 1–6, DOI: 10.1109/EPQU.2007.4424220.
17. Ebrahimi M., Khajehoddin S.A., Karimi-Ghartemani M. An Improved Damping Method for Virtual Synchronous Machines. – IEEE Transactions on Sustainable Energy, 2019, vol. 10, No. 3, pp. 1491–1500, DOI: 10.1109/TSTE.2019.2902033.
18. Sedoykin D.N., Yurganov А.А. Izvestiya NTTs Edinoy energeticheskoy sistemy – in Russ. (News of the STC of the Unified Energy System), 2017, No. 2(77), pp. 74–77.
19. Mandrile F., Carpaneto E., Bojoi R. Virtual Synchronous Generator with Simplified Single-Axis Damper Winding. – 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), 2019, pp. 2123–2128, DOI: 10.1109/ISIE.2019.8781233.
20. Tanfil'ev O.V., Filippova T.A., Tanfil'eva D.V. Nauchnyy vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – in Russ. (Scientific Bulletin of Novosibirsk State Technical Univer-sity), 2018, No. 2(71), pp. 175–187.
---
The research was carried out at the expense of the grant of the Russian Science Foundation No. 21-79-00129
Published
2022-01-17
Section
Article