Application of Radar-Absorbing Materials for Attenuating High-Frequency Interference in the Electrical Circuits of Aircraft Electrical Systems

  • Vladimir Yu. KIRILLOV
  • Petr A. ZHUKOV
  • Andrey A. TORLUPA
Keywords: radar-absorbing materials, high-frequency interference, electrical systems, aircraft

Abstract

Conducted high-frequency electromagnetic interference is induced in the electrical circuits of aircraft electrical systems under the effect of external man-induced electromagnetic fields penetrating into the aircraft structure through radio-transparent apertures. To attenuate the impact of the conducted high-frequency electromagnetic interference induced in the two-wire lines of electrical bundles and other electrical circuits of electrical systems on sensitive semiconductor elements and integral microchips of on-board instruments and devices, low-pass filers on the basis of lumped components are used. At high frequencies, resonance phenomena may occur in the filter electrical circuits, which degrade the filter capabilities to attenuate conducted interference. Conducted high-frequency interference can be attenuated, and their propagation paths in the two-wire lines of electrical bundles and in the electrical circuits of on-board instruments and electrical system devices can be eliminated by applying radar-absorbing materials (RAM). Conducted electromagnetic interference in two-wire lines at a frequency above 1000 MHz generates high-frequency electromagnetic fields. With RAM placed in close proximity to the conductors of two-wire lines, it is possible to attenuate conducted high-frequency interference due to absorption of the interference electromagnetic field energy. The results of experimental studies are presented, the data of which make it possible to evaluate the extent to which the conducted high-frequency interference is attenuated in the frequency band 0.1–3000 MHz by applying radar-absorbing materials.

Author Biographies

Vladimir Yu. KIRILLOV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Head of the Theoretical Electrical Engineering Dept., Dr. Sci. (Eng.).

Petr A. ZHUKOV

(MOKB "MARS" branch of VNIIA them. N.L. Dukhova, Moscow, Russia) – Research Associate of the Electromagnentic Compatibility Dept.

Andrey A. TORLUPA

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Postgraduate Student of the Theoretical Electrical Engineering Dept.

References

1. Кечиев Л.Н. Экранирование радиоэлектронной аппаратуры. Инженерное пособие. М.: Грифон, 2019, 722 с.
2. Ковалева Т.Ю. и др. Радиопоглощающие материалы для покрытия электронных средств спецтехники. – 27 междунар. конф. “Электромагнитное поле и материалы. Фундаментальные физические исследования”, 2015, с. 431–436.
3. Tamminen A., et al. Transmittance and Monostatic Reflectivity of Radar Absorbing Materials for CATR. – The 2nd European Conf. on Antennas and Propagation, 2007, DOI:10.1049/ic.2007.1561.
4. Gevorkyan A.V., Privalova T. Yu. The Radiation Characteristics of 3.43: 1 Bandwidth Dipole Antenna with Radar Absorbing Material. – IEEE Radio and Antenna Days of the Indian Ocean, 2018,DOI:10.23919/RADIO.2018.8572346.
5. Anyutin N.V., Titarenko A.V., Elizarov S.V. Justification of the Conditions of Reproducible Measured Characteristics of Radio Absorbing Materials in Free Space. – Radiation and Scattering of Electromagnetic Waves 2017, DOI:10.1109/RSEMW.2017.8103597.
6. Zhang Ch., et al. Application of radar absorbing material in design of metal space frame radomes. – Cross Strait Quad-Regional Radio Science and Wireless Technology Conf., 2011, DOI:10.1109/CSQRWC.2011.6036926.
7. Budai A.G., et al. Influence of Gratings Made from Conducting Wire Elements on Electromagnetic Properties of Radio Absorbing Coating. – 20th Int. Crimean Conf. "Microwave & Telecommunication", 2010, DOI:10.1109/CRMICO.2010.5632971.
8. Zhukov P.A., Kirillov V.Yu. The Use of Radio Absorbing Materials for Electronic Devices. – 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2020, DOI:10.1109/REEPE49198.2020.9059210.
9. Zhukov P.A., Kirillov V.Yu. The Application of Radio Absorbing Material to Reduce Interference Emissions from Instruments and Devices of Spacecraft Electrical System. – IOP Conference Series: Materials Science and Engineering, 18th International Conference AviaSpace-2019, 2020, vol. 868, DOI:10.1088/1757-899X/868/1/012009.
10. Гетманец А.Н. и др. Передача наведенных электромагнитными полями токов и напряжений по цепям связи. – Технологии электромагнитной совместимости, 2020, № 3 (74), с. 3–24.
11. Ott H.W. Electromagnetic Compatibility Engineering. John Wiley & Sons, Inc., 2009, 872 p.
12. Гизатуллин З.М., Чермошенцев С.Ф. Моделирование электромагнитных помех в неэкранированной витой паре при внешнем гармоническом электромагнитном воздействии. – Информационные технологии, 2010, № 6, с. 2–7.
13. Noise, Сross-talk, Jitter, Skew and EMI. Section 6. Backplane Designer’s guide. Fairchild Semiconductor Corporation MS500736, 2002, 11 p.
14. Hill D. Cavcey K. Johnk R. Cross-Talk Between Microstrip Transmission Lines. – IEEE Transactions on EMC, 1994, vol. 36, No. 4, pp. 314–321, DOI:10.1109/15.328861.
15. Brooks D. Signal Integrity Issues and Printed Circuit Board design. Prentice Hall PTR, 2003, 432 p.
16. Нгуен Ван Тай., Кириллов В.Ю. Перекрестные помехи в электрических соединителях. – Электричество, 2021, № 3, с. 54–59.
17. Кечиев Л.Н. Печатные платы и узлы гигабитной электроники. М.: Грифон, 2017, 423 с.
18. Барнс Дж. Электронное конструирование: Методы борьбы с помехами. М.: Мир, 1990, 238 с.
19. Кириллов В.Ю. и др. Термостойкий радиопоглощающий материал для уменьшения помехоэмиссии и ослабления резонансных явлений бортовых приборов и устройств космических аппаратов. – Известия РАН. Серия физическая, 2021, т. 85, № 11, с. 1573–1576.
#
1. Kechiev L.N. Ekranirovanie radioelektronnoy apparatury. In-zhenernoe posobie (Shielding of Electronic Equipment. Engineering Manual). М.: Grifon, 2019, 722 p.
2. Kovaleva Т.Yu., et al. 27 mezhdunar. konf. “Elektromagnitnoe pole i materialy. Fundamental'nye fizicheskie issledovaniya” (27 Inter-national Conf. "Electromagnetic Field and Materials. Fundamental Physical Research”), 2015, pp. 431–436.
3. Tamminen A., et al. Transmittance and Monostatic Reflectivity of Radar Absorbing Materials for CATR. – The 2nd European Conf. on Antennas and Propagation, 2007, DOI:10.1049/ic.2007.1561.
4. Gevorkyan A.V., Privalova T. Yu. The Radiation Characteristics of 3.43: 1 Bandwidth Dipole Antenna with Radar Absorbing Material. – IEEE Radio and Antenna Days of the Indian Ocean, 2018, DOI:10.23919/RADIO.2018.8572346.
5. Anyutin N.V., Titarenko A.V., Elizarov S.V. Justification of the Conditions of Reproducible Measured Characteristics of Radio Absorbing Materials in Free Space. – Radiation and Scattering of Electromagnetic Waves 2017, DOI:10.1109/RSEMW.2017.8103597.
6. Zhang Ch., et al. Application of radar absorbing material in design of metal space frame radomes. – Cross Strait Quad-Regional Radio Science and Wireless Technology Conf., 2011, DOI:10.1109/CSQRWC.2011.6036926.
7. Budai A.G., et al. Influence of Gratings Made from Conducting Wire Elements on Electromagnetic Properties of Radio Absorbing Coating. – 20th Int. Crimean Conf. "Microwave & Telecommunication", 2010, DOI:10.1109/CRMICO.2010.5632971.
8. Zhukov P.A., Kirillov V.Yu. The Use of Radio Absorbing Materials for Electronic Devices. – 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2020, DOI:10.1109/REEPE49198.2020.9059210.
9. Zhukov P.A., Kirillov V.Yu. The Application of Radio Absorbing Material to Reduce Interference Emissions from Instruments and Devices of Spacecraft Electrical System. – IOP Conference Series: Materials Science and Engineering, 18th International Conference AviaSpace-2019, 2020, vol. 868, DOI:10.1088/1757-899X/868/1/012009.
10. Getmanets A.N., et al. Tekhnologii elektromagnitnoy sovmesti-mosti – in Russ. (Electromagnetic Compatibility Technologies), 2020, No. 3 (74), pp. 3–24.
11. Ott H.W. Electromagnetic Compatibility Engineering. John Wiley & Sons, Inc., 2009, 872 p.
12. Gizatullin Z.M., Chermoshentsev S.F. Informatsionnye tekhnologii – in Russ. (Information Technologies), 2010, No. 6, pp. 2–7.
13. Noise, Сross-talk, Jitter, Skew and EMI. Section 6. Backplane Designer’s guide. Fairchild Semiconductor Corporation MS500736, 2002, 11 p.
14. Hill D. Cavcey K. Johnk R. Cross-Talk Between Microstrip Transmission Lines. – IEEE Transactions on EMC, 1994, vol. 36, No. 4, pp. 314–321, DOI:10.1109/15.328861.
15. Brooks D. Signal Integrity Issues and Printed Circuit Board design. Prentice Hall PTR, 2003, 432 p.
16. Nguen Van Tay., Kirillov V.Yu. Elektrichestvo – in Russ. (Electricity), 2021, No. 3, pp. 54–59.
17. Kechiev L.N. Pechatnye platy i uzly gigabitnoy elektroniki (Printed Circuit Boards and Nodes of Gigabit Electronics). М.: Grifon, 2017, 423 p.
18. Barns J. Elektronnoe konstruirovanie: Metody bor'by s pomekhami (Electronic Design: Antiinterference Methods). М.: Мir, 1990, 238 p.
19. Kirillov V.Yu., et al. Izvestiya RAN. Seriya fizicheskaya – in Russ. (News of the Russian Academy of Sciences. Physical Series), 2021, vol. 85, No. 11, pp. 1573–1576.
Published
2022-01-18
Section
Article