Analysis of Methods for Diagnosing the Aromatic Groups Fraction in Transformer Oils

  • Aleksandr N. TURANOV
Keywords: transformer oil, diagnostics

Abstract

This review describes one of transformer oil degradation mechanisms - an increase in the fraction of aromatic compounds during the operation of oil-filled electric power equipment. The influence of such substances on the properties and characteristics of oils used in the power system of the Russian Federation, and the features relating to the operation of oil filled transformers with an increased fraction of arenes are discussed. The need to monitor the fraction of aromatic compounds in transformer oils is substantiated. The known qualitative and quantitative analysis methods suitable for this purpose (Nastyukov reaction, mass spectroscopy, ultraviolet spectroscopy, infrared spectroscopy, nuclear magnetic resonance, Raman scattering, chromatography, luminescence, and the nomogram method) are listed. The paper gives brief characteristics of the parameters by which the fraction of aromatic groups in transformer oil is determined. The advantages and disadvantages of each method are analyzed with taking into account the features of the systems under study. It is concluded that infrared spectroscopy and 1H and 13C nuclear magnetic resonance are the most promising ones for monitoring the content of aromatic substances in transformer oil, whereas the use of Raman scattering and luminescence methods requires further research and development for being applied in transformer oil analysis procedures.

Author Biography

Aleksandr N. TURANOV

(Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia) – Senior Researcher of the Molecular Radiospectroscopy Laboratory, Cand. Sci. (Phys.-Math.).

References

1. Wilson A.C.M. Insulating liquids: Their Uses, Manufacture and Properties. London, New York: Peter Peregrinus LTD, 1980, 221 p.
2. Kozlov V., Turanov A. Transformer oil and modern physics. – IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(5), pp. 1485–1497, DOI:10.1109/TDEI.2012.6311491.
3. Липштейн Р.А., Шахнович М.И. Трансформаторное масло. М.: Энергоатомиздат, 1983, 296 с.
4. Tee S.J., et al. An Early Degradation Phenomenon Identified through Transformer Oil Database Analysis. – IEEE Transactions on Dielectrics and Electrical Insulation, 2016, vol. 23, No. 3, pp. 1435–1443, DOI: 10.1109/TDEI.2015.005569.
5. Mahanta D.K., Andrew O. Transformer Dielectric Liquid: A Review. – IEEE PES/IAS Power Africa, 2020, pp. 1–5, DOI: 10.1109/PowerAfrica49420.2020.9219867.
6. Эмануэль Н.М., Денисов Е.Т., Майзус З.К. Цепные реакции окисления в жидкой фазе. М.: Наука, 1965, 375 с.
7. Туранова О.А., Козлов В.К., Туранов А.Н. Механизмы деградации трансформаторных масел и их диагностика. Казань: КГЭУ, 2019, 101 с.
8. Гафиятуллин Л.Г. и др. УФ спектроскопия трансформаторного масла ГК. – Оптика и спектроскопия, 2010, т. 109, № 1, с. 102–105.
9. Суханов А.А. и др. ЭПР и ЯМР трансформаторного масла ГК. – Химия и технология топлив и масел, 2013, № 3 (577), с. 47–51.
10. Туранова О.А. и др. ИК спектроскопия трансформаторного масла марки ГК. – Оптика и спектроскопия, 2013, т. 114, № 4, с. 628–631.
11. Коренман И.М. Фотометрический анализ: Методы определения органических соединений. М.: Книга по Требованию, 2014, 339 с.
12. Meena R.R., et al. Transformer Oil Degradation Study by Chromatography, Spectroscopy and Dissolved Gas Analysis. – Petroleum and Coal, 2018, 60 (5), pp. 872–878.
13. Ван-Нес К., Ван-Вестен Х. Состав масляных фракций нефти и их анализ. М.: Издательство ИЛ, 1954, 464 с.
14. Сирюк А.Г., Зимина К.И. Количественное определение некоторых ароматических углеводородов по ультрафиолетовым спектрам поглощения. – Химия и технология топлив и масел, 1963, № 2, с. 52–56.
15. Mullins O.C. Optical Interrogation of Aromatic Moieties in Crude Oils and Asphaltenes. – Structures and Dynamics of Asphaltenes, 1999, pp. 21–77.
16. Сирюк А.Г., Радченко Е.Д., Фернандес-Гомес М.М. Анализ ароматических углеводородов в топливах по УФ-спектрам поглощения. – Химия и технология топлив и масел, 1979, № 7, с. 48–51.
17. Евдокимов И.Н., Лосев А.П. Применение УФ видимой абсорбционной спектроскопии для описания природных нефтей. – Нефтегазовое дело, 2007, № 1, с. 1–25.
18. Catalogue of Optical Spectra of Oils [Электрон. ресурс], URL: www.opticsense.eu/catalogue-oils.php (дата обращения 07.12.2021).
19. Казицына Л.А., Куплетская Н.Б. Применение УФ-, ИК-, ЯМР- и масс-спектроскопии в органической химии. М.: МГУ, 1979, 240 с.
20. Кроль Б.Б., Рождественская А.А., Кучерявая Н.Н. Изучение сернистых соединений, содержащихся в трансформаторном масле. – Химия и технология топлив и масел, 1964, № 5, с. 34–37.
21. Коваль А.В. и др. Влияние некоторых факторов на эксплуатационные свойства трансформаторных масел. – Проблемы энергетики, 2005, № 1-2, с. 100–104.
22. Lai S.P., Abu-Siada A., Islam S. Furan Measurement in Transformer Oil by UV-Vis Spectral Response Using Fuzzy Logic. – Int. Conf. Electrical and Computer Engineering, 2008, DOI:10.1109/ICECE.2008.4769302.
23. Lai S.P., et al. Correlation between UV-Vis Spectral Response and Furan Measurement of Transformer Oil. – Int. Conf. Condition Monitoring and Diagnosis, 2008, DOI:10.1109/CMD.2008.4580372.
24. Kalathiripi H., Karmakar S. Analysis of Transformer Oil Degradation Due to Thermal Stress Using Optical Spectroscopic Techniques. – International Transactions on Electrical Energy Systems, 2017, 27(9), DOI:10.1002/etep.2346.
25. Alshehawy A.M., et al. Impact of Thermal Aging of Transformer Oil on UV-Vis Optical Spectrum and Dielectric Properties. – Eighteenth International Middle East Power Systems Conference (MEPCON), 2016. pp. 860–865, DOI: 10.1109/MEPCON.2016.7836996.
26. Mehmood M.A., et al. Analyzing the Health Condition and Chemical Degradation in Field Aged Transformer Insulation Oil Using Spectroscopic Techniques. – International Conference on Diagnostics in Electrical Engineering, 2018, DOI: 10.1109/DIAGNOSTIKA.2018.8526138.
27. Alshehawy A.M., et al. Evaluating the impact of aging in field transformer oil using optical spectroscopy techniques. – IEEE 19th International Conference on Dielectric Liquids (ICDL), 2017, DOI: 10.1109/ICDL.2017.8124626.
28. Leong Y.S., et al. UV-Vis Spectroscopy: A New Approach for Assessing the Color Index of Transformer Insulating Oil. – Sensors, 2018, 18 (7), 2175, DOI: 10.3390/s18072175.
29. Kurakina O.E., et al. Research of the Changes in the Structural Group Composition of Transformer Oil During Operation. – Problemele Energeticii Regionale, 2018, vol. 2, № 37, p. 39–45.
30. Karmakar S., Dutta A., Kalathiripi H. Investigation of the Effect of High Voltage Impulse Stress on Transformer Oil by Infrared Spectroscopy. – International Conference on High Voltage Engineering and Technology (ICHVET), 2019, DOI: 10.1109/ICHVET.2019.8724336.
31. Zhang J., et al. Pyrolysis kinetics and determination of organic components and N-alkanes yields of Karamay transformer oil using TG, FTIR and Py-GC/MS analyses. – Fuel, 2021, 306(7),121691, DOI:10.1016/j.fuel.2021.121691.
32. Sai R.S., et al. Degradation Studies of Electrical, Physical and Chemical Properties of Aged Transformer Oil. – Journal of Physics: Conference Series, 2020, 1706(1), 012056, DOI: 10.1088/1742-6596/1706/1/012056.
33. Rako M. NMR study of oils. – Czechoslovak Journal of Physics, 1963, vol. 13, No. 6, pp. 441–443.
34. Volkov M.M., Turanova O., Turanov A. Determination of Moisture Content of Insulating Oil by NMR Method with Selective Pulses. – IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(5), pp. 1989–1991, DOI:10.1109/TDEI.2018.007342.
35. Lo C.K., et al. Transformer oil degradation monitoring with chromatically analysed optical fluorescence. – Proceedings of the International Conference on Imaging, Signal Processing and Communication, 2017, pp. 171–175, DOI: 10.1145/3132300.3132329.
36. Alshehawy A.M., et al. Photoluminescence Spectroscopy Measurements for Effective Condition Assessment of Transformer Insulating Oil. – Processes, 2021, vol. 9, DOI:10.3390/pr9050732.
#
1. Wilson A.C.M. Insulating liquids: Their Uses, Manufacture and Properties. London, New York: Peter Peregrinus LTD, 1980, 221 p.
2. Kozlov V., Turanov A. Transformer oil and modern physics. – IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(5), pp. 1485–1497, DOI:10.1109/TDEI.2012.6311491.
3. Lipshteyn R.A., Shahnovich М.I. Transformatornoe maslo (Transformer Oil). М.: Energoatomizdat, 1983, 296 p.
4. Tee S.J., et al. An Early Degradation Phenomenon Identified through Transformer Oil Database Analysis. – IEEE Transactions on Dielectrics and Electrical Insulation, 2016, vol. 23, No. 3, pp. 1435–1443, DOI: 10.1109/TDEI.2015.005569.
5. Mahanta D.K., Andrew O. Transformer Dielectric Liquid: A Review. – IEEE PES/IAS Power Africa, 2020, pp. 1–5, DOI: 10.1109/PowerAfrica49420.2020.9219867.
6. Emanuel' N.M., Denisov E.T., Mayzus Z.К. Tsepnye reaktsii okisleniya v zhidkoy faze (Chain Reactions of Oxidation in the Liquid Phase). М.: Nauka, 1965, 375 p.
7. Turanova O.A., Kozlov V.K., Turanov A.N. Mekhanizmy degradatsii transformatornyh masel i ih diagnostika (Mechanisms of Degradation of Transformer Oils and Their Diagnostics). Kazan': КGEU, 2019, 101 p.
8. Gafiyatullin L.G., et al. Optika i spektroskopiya – in Russ. (Optics and Spectroscopy), 2010, vol. 109, No. 1, pp. 102–105.
9. Suhanov А.А., et al. Himiya i tekhnologiya topliv i masel – in Russ. (Chemistry and Technology of Fuels and Oils), 2013, No. 3 (577), pp. 47–51.
10. Turanova О.А., et al. Optika i spektroskopiya – in Russ. (Optics and Spectroscopy), 2013, vol. 114, No. 4, pp. 628–631.
11. Korenman I.М. Fotometricheskiy analiz: Metody opredeleniya organicheskih soedineniy (Photometric Analysis: Methods for Determining Organic Compounds). М.: Kniga po Trebovaniyu, 2014, 339 p.
12. Meena R.R., et al. Transformer Oil Degradation Study by Chromatography, Spectroscopy and Dissolved Gas Analysis. – Petroleum and Coal, 2018, 60 (5), pp. 872–878.
13. Van-Nes K., Van-Vesten H. Sostav maslyanyh fraktsiy nefti i ih analiz (Composition of Oil Fractions and Their Analysis). М.: Izdatel'stvo IL, 1954, 464 p.
14. Siryuk A.G., Zimina K.I. Himiya i tekhnologiya topliv i masel – in Russ. (Chemistry and Technology of Fuels and Oils), 1963, No. 2, pp. 52–56.
15. Mullins O.C. Optical Interrogation of Aromatic Moieties in Crude Oils and Asphaltenes. – Structures and Dynamics of Asphaltenes, 1999, pp. 21–77.
16. Siryuk A.G., Radchenko E.D., Fernandes-Gomes M.M. Himiya i tekhnologiya topliv i masel – in Russ. (Chemistry and Technology of Fuels and Oils), 1979, No. 7, pp. 48–51.
17. Evdokimov I.N., Losev A.P. Neftegazovoe delo – in Russ. (Oil and gas business), 2007, No. 1, pp. 1–25.
18. Catalogue of Optical Spectra of Oils [Electron. resource], URL: www.opticsense.eu/catalogue-oils.php (Date of appeal 07.12.2021).
19. Kazitsyna L.A., Kupletskaya N.B. Primenenie UF-, IK-, YAMR- i mass-spektroskopii v organicheskoy himii (Application of UV-, IR-, NMR- and Mass Spectroscopy in Organic Chemistry). М.: МGU, 1979, 240 p.
20. Krol' B.B., Rozhdestvenskaya A.A., Kucheryavaya N.N. Himiya i tekhnologiya topliv i masel – in Russ. (Chemistry and Technology of Fuels and Oils), 1964, No. 5, pp. 34–37.
21. Koval' A.V., et al. Problemy energetiki – in Russ. (Power Engineering Problems), 2005, No. 1-2, pp. 100–104.
22. Lai S.P., Abu-Siada A., Islam S. Furan Measurement in Transformer Oil by UV-Vis Spectral Response Using Fuzzy Logic. – Int. Conf. Electrical and Computer Engineering, 2008, DOI:10.1109/ICECE.2008.4769302.
23. Lai S.P., et al. Correlation between UV-Vis Spectral Response and Furan Measurement of Transformer Oil. – Int. Conf. Condition Monitoring and Diagnosis, 2008, DOI:10.1109/CMD.2008.4580372.
24. Kalathiripi H., Karmakar S. Analysis of Transformer Oil Degradation Due to Thermal Stress Using Optical Spectroscopic Techniques. – International Transactions on Electrical Energy Systems, 2017, 27(9), DOI:10.1002/etep.2346.
25. Alshehawy A.M., et al. Impact of Thermal Aging of Transformer Oil on UV-Vis Optical Spectrum and Dielectric Properties. – Eighteenth International Middle East Power Systems Conference (MEPCON), 2016. pp. 860–865, DOI: 10.1109/MEPCON.2016.7836996.
26. Mehmood M.A., et al. Analyzing the Health Condition and Chemical Degradation in Field Aged Transformer Insulation Oil Using Spectroscopic Techniques. – International Conference on Diagnostics in Electrical Engineering, 2018, DOI: 10.1109/DIAGNOSTIKA.2018.8526138.
27. Alshehawy A.M., et al. Evaluating the impact of aging in field transformer oil using optical spectroscopy techniques. – IEEE 19th International Conference on Dielectric Liquids (ICDL), 2017, DOI: 10.1109/ICDL.2017.8124626.
28. Leong Y.S., et al. UV-Vis Spectroscopy: A New Approach for Assessing the Color Index of Transformer Insulating Oil. – Sensors, 2018, 18 (7), 2175, DOI: 10.3390/s18072175.
29. Kurakina O.E., et al. Research of the Changes in the Structural Group Composition of Transformer Oil During Operation. – Problemele Energeticii Regionale, 2018, vol. 2, № 37, p. 39–45.
30. Karmakar S., Dutta A., Kalathiripi H. Investigation of the Effect of High Voltage Impulse Stress on Transformer Oil by Infrared Spectroscopy. – International Conference on High Voltage Engineering and Technology (ICHVET), 2019, DOI: 10.1109/ICHVET.2019.8724336.
31. Zhang J., et al. Pyrolysis kinetics and determination of organic components and N-alkanes yields of Karamay transformer oil using TG, FTIR and Py-GC/MS analyses. – Fuel, 2021, 306(7),121691, DOI:10.1016/j.fuel.2021.121691.
32. Sai R.S., et al. Degradation Studies of Electrical, Physical and Chemical Properties of Aged Transformer Oil. – Journal of Physics: Conference Series, 2020, 1706(1), 012056, DOI: 10.1088/1742-6596/1706/1/012056.
33. Rako M. NMR study of oils. – Czechoslovak Journal of Physics, 1963, vol. 13, No. 6, pp. 441–443.
34. Volkov M.M., Turanova O., Turanov A. Determination of Moisture Content of Insulating Oil by NMR Method with Selective Pulses. – IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(5), pp. 1989–1991, DOI:10.1109/TDEI.2018.007342.
35. Lo C.K., et al. Transformer oil degradation monitoring with chromatically analysed optical fluorescence. – Proceedings of the International Conference on Imaging, Signal Processing and Communication, 2017, pp. 171–175, DOI: 10.1145/3132300.3132329.
36. Alshehawy A.M., et al. Photoluminescence Spectroscopy Measurements for Effective Condition Assessment of Transformer Insulating Oil. – Processes, 2021, vol. 9, DOI:10.3390/pr9050732.
Published
2021-12-07
Section
Article