Consideration of Harmonic Distortions in Modeling the Electromagnetic Fields Generated by Power Lines Feeding Railway Traction Substations

  • Natal'ya V. BUYAKOVA
  • Vasiliy P. ZAKARYUKIN
  • Andrey V. KRYUKOV
  • Dmitriy A. SEREDKIN
Keywords: electromagnetic fields, higher harmonic components, modeling

Abstract

In setting up intelligent electric networks, special attention is paid to the operational safety of electric power facilities and reduction of their negative impact on the personnel and environment. Significant electromagnetic field intensity levels can be observed at such objects. To ensure electromagnetic safety under the modern conditions characterized by large-scale introduction of digitalization tools, it is necessary to develop electromagnetic field digital modeling algorithms. Adequate models of the electromagnetic field generated by power transmission lines can be obtained on the basis of methods for determining the electric power system operation modes in phase coordinates. A methodology for analyzing electromagnetic safety has been developed on the basis of such models, which differs from the known approaches in being systematic, versatile, adequate to the external environment, and comprehensive. By using the newly developed methodology, it is possible to determine the intensity of electromagnetic fields generated by multi-wire transmission lines taking into account higher harmonic components of currents and voltages. Under the conditions of digitalizing the electric power industry, the use of the proposed methodology for practical applications will make it possible to analyze the conditions of electromagnetic safety in electric power systems on a scientifically sound basis and develop measures for its further improvment.

Author Biographies

Natal'ya V. BUYAKOVA

(Angarsk State Technical University, Angarsk, Russia) – Senior Lecturer of the High Voltage Engineering and Electrophysics Dept., Cand. Sci.(Eng). 

Vasiliy P. ZAKARYUKIN

(Irkutsk State University of Railway Transport, Irkutsk, Russia) – Professor-consultant of "Smart grid" LLC, Dr. Sci. (Eng.).

Andrey V. KRYUKOV

(Irkutsk State University of Railway Transport, Irkutsk, Russia) – Professor of the Electric Power Engineering of Transport Dept., Dr. Sci. (Eng.).

Dmitriy A. SEREDKIN

(Irkutsk State University of Railway Transport, Irkutsk, Russia) – Postgraduate Student. 

References

1. Сидоров А.И., Окраинская И.С. Электромагнитные поля вблизи электроустановок сверхвысокого напряжения. Челябинск: Изд-во ЮУрГУ, 2008, 204 с.
2. Мисриханов М.Ш., Рубцова Н.Б., Токарский А.Ю. Обеспечение электромагнитной безопасности электросетевых объектов. М., Вологда: Инфра-Инженерия, 2019, 508 с.
3. Аполлонский С.М. Проблемы электромагнитной безопасности на электрифицированной железной дороге. т. 2. Электромагнитная безопасность на железной дороге с переменным током в тяговой сети. М.: Русайнс, 2017, 415 с.
4. Косарев А.Б., Косарев Б.И. Основы электромагнитной безопасности систем электроснабжения железнолорожного транспорта. М.: Интекст, 2008, 480 с.
5. Буякова Н.В., Закарюкин В.П., Крюков А.В. Электромагнитная безопасность в системах электроснабжения железных дорог: моделирование и управление. Ангарск: Изд-во АнГТУ, 2018, 382 с.
6. Блейк Л.Б. Защита от электромагнитных полей: о влиянии на организм человека бытовых электроприборов, мобильных телефонов, линий электропередач и других электрических устройств. М.: АСТ, Астрель, 2007, 447 с.
7. Qabazard M. Survey of Electromagnetic Field Radiation Associated with Power Transmission Lines in the State of Kuwait. – 2007 IEEE International Conference on Electromagnetics in Advanced Applications, 2007, DOI:10.1109/ICEAA.2007.4387423.
8. Taheri P., Kordi B., Gole A.М. Transient Electromagnetic Fields Associated with a Power Transmission Line above a Lossy Ground. – IEEE 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, 2009, DOI:10.1109/ANTEMURSI.2009.4805118.
9. Bat-Erdene B., Battulga M., Tuvshinzaya G. Method of Calculation of Low-Frequency Electromagnetic Field around 15 kV Transmission Lines. – IEEE International Conference on Power and Energy, 2020, DOI:10.1109/PECon48942.2020.9314436.
10. Chervenkov A.G. Electromagnetic Field Evaluation in Building Located Close to High-Voltage Overhead Line. – IEEE 17th Conference on Electrical Machines, Drives and Power Systems, 2021, DOI: 10.1109/ELMA52514.2021.9503058.
11. Chervenkov A.G. Modelling and Evaluation of Electromagnetic Field of Urban High-Voltage Power Line. – IEEE 7th International Conference on Energy Efficiency and Agricultural Engineering, 2020, DOI:10.1109/EEAE49144.2020.9278992.
12. Radulovic J.J., Rankovic V.M. Application of RBF Neural Network and ANFIS for Electromagnetic Field Prediction around the Power Lines. – IEEE 9th International Conference on Telecommunication in Modern Satellite, Cable, and Broadcasting Services, 2009, DOI: 10.1109/TELSKS.2009.5339473.
13. Xu L., et al. Research on Electric Field of High-Voltage Transmission Line Power Frequency. – IEEE International Conference on Power System Technology, 2006, DOI: 10.1109/ICPST.2006.321493.
14. Maruthi R., et al. Channakeshava. Computation and measurement of AC electric and magnetic field lateral profiles and longitudinal contours under transmission lines. – International Conference on Energy Management and Power Delivery EMPD '95, 1995, vol. 1, DOI: 0.1109/EMPD.1995.500727.
15. Rachedi B.A., et al. Evaluation of Electromagnetic Field Produced by Multi-Parallel High Voltage Lines. – IEEE International Conference on Intelligent Energy and Power Systems (IEPS), 2014, DOI:10.1109/IEPS.2014.6874197.
16. Feng G., Wang Ya., Zhang B. Study on Electromagnetic Environment of Multi-circuit Transmission Lines on Same Tower. – Joint International Conference on Power System Technology and IEEE Power India Conference, 2008, DOI: 10.1109/ICPST.2008.4745302.
17. Ogunsola A., Mariscotti A. Electromagnetic Compatibility in Railways: Analysis and Management. Springer, 2013, 568 p.
18. Xiaotian L., et al. EMC in Rail Transportation. – Energy Procedia, 2016, 104, pp. 526–531, DOI:10.1016/j.egypro.2016.12.089.
19. Baranowski S., et al. EMC Analysis of Railway Power Substation Modeling and Measurements Aspects. – Infrastructure Design, Signalling and Security in Railway, 2012, DOI:10.5772/37522.
20. Kircher R., et al. Electromagnetic Fields Related to High-Speed Transportation Systems. – Transportation Systems and Technology, 2018, 4(2), pp. 152–166, DOI: 0.17816 / transsyst201842152-166.
21. Oancea C.D., Calin F., Golea V. On the Electromagnetic Field in the Surrounding Area of Railway Equipment and Installations. – 2019 International Conference on Electromechanical and Energy Systems, 2019, DOI: 10.1109/SIELMEN.2019.8905871.
22. Lu N., et al. The Research on Electromagnetic Emission of Traction Network with Short-circuit Current Pulse. – IEEE Transactions on Transportation Electrification, 2021, DOI: 10.1109/tte.2021.3115578.
23. Закарюкин В.П., Крюков А.В. Сложнонесимметричные режимы электрических систем. Иркутск: Изд-во Иркут. ун-та, 2005, 273 с.
24. Buyakova N.V., et al. Simulation of Electromagnetic Fields Generated by Overhead Power Linesand Railroad Traction Networks. – Energy Systems Research, 2021, vol . 4, No. 2, pp. 70–88.
25. Закарюкин В.П., Крюков А.В., Черепанов А.В. Интеллектуальные технологии управления качеством электроэнергии. Иркутск: ИрНИТУ, 2015, 218 с.
26. Carson I.R. Wave Propagation in Overhead Wires with Ground Return. – Bell System Technical Journal, 1926, vol. 5, pp. 539–554, DOI:10.1002/J.1538-7305.1926.TB00122.X.
#
1. Sidorov A.I., Okrainskaya I.S. Elektromagnitnye polya vblizi elektroustanovok sverhvysokogo napryazheniya (Electromagnetic Fields Near Ultra-High Voltage Electrical Installations). Chelyabinsk: Izd-vo YuUrGU, 2008, 204 p.
2. Misrihanov M.Sh., Rubtsova N.B., Tokarskiy A.Yu. Obespechenie elektromagnitnoy bezopasnosti elektrosetevyh ob"ektov (Provision of Electromagnetic Safety of Electric Grid Facilities). М., Vologda: Infra-Inzheneriya, 2019, 508 p.
3. Apollonskiy S.М. Problemy elektromagnitnoy bezopasnosti na elektrifitsirovannoy zheleznoy doroge. t. 2. Elektromagnitnaya bezopasnost' na zheleznoy doroge s peremennym tokom v tyagovoy seti (Problems of Electromagnetic Safety on an Electrified Railway. vol. 2. Electromagnetic Safety on an Alternating Current Railway in a Traction Network). М.: Rusayns, 2017, 415 p.
4. Kosarev A.B., Kosarev B.I. Osnovy elektromagnitnoy bezopasnosti sistem elektrosnabzheniya zheleznolorozhnogo transporta (Fundamentals of Electromagnetic Safety of Power Supply Systems of Railway Transport). М.: Intekst, 2008, 480 p.
5. Buyakova N.V., Zakaryukin V.P., Kryukov A.V. Elektromagnitnaya bezopasnost' v sistemah elektrosnabzheniya zheleznyh dorog: modelirovanie i upravlenie (Electromagnetic Safety in Railway Power Supply Systems: Modeling and Management). Angarsk: Izd-vo AnGTU, 2018, 382 p.
6. Bleyk L.B. Zashchita ot elektromagnitnyh poley: o vliyanii na organizm cheloveka bytovyh elektropriborov, mobil'nyh telefonov, liniy elektroperedach i drugih elektricheskih ustroystv (Protection from Electromagnetic Fields: about the Impact on the Human Body of Household Electrical Appliances, Mobile Phones, Power Lines and Other Electrical Devices). М.: АSТ, Astrel', 2007, 447 p.
7. Qabazard M. Survey of Electromagnetic Field Radiation Associated with Power Transmission Lines in the State of Kuwait. – 2007 IEEE International Conference on Electromagnetics in Advanced Applications, 2007, DOI:10.1109/ICEAA.2007.4387423.
8. Taheri P., Kordi B., Gole A.М. Transient Electromagnetic Fields Associated with a Power Transmission Line above a Lossy Ground. – IEEE 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, 2009, DOI:10.1109/ANTEMURSI.2009.4805118.
9. Bat-Erdene B., Battulga M., Tuvshinzaya G. Method of Calculation of Low-Frequency Electromagnetic Field around 15 kV Transmission Lines. – IEEE International Conference on Power and Energy, 2020, DOI:10.1109/PECon48942.2020.9314436.
10. Chervenkov A.G. Electromagnetic Field Evaluation in Building Located Close to High-Voltage Overhead Line. – IEEE 17th Conference on Electrical Machines, Drives and Power Systems, 2021, DOI: 10.1109/ELMA52514.2021.9503058.
11. Chervenkov A.G. Modelling and Evaluation of Electromagnetic Field of Urban High-Voltage Power Line. – IEEE 7th International Conference on Energy Efficiency and Agricultural Engineering, 2020, DOI:10.1109/EEAE49144.2020.9278992.
12. Radulovic J.J., Rankovic V.M. Application of RBF Neural Network and ANFIS for Electromagnetic Field Prediction aro-und the Power Lines. – IEEE 9th International Conference on Telecommunication in Modern Satellite, Cable, and Broadcasting Services, 2009, DOI: 10.1109/TELSKS.2009.5339473.
13. Xu L., et al. Research on Electric Field of High-Voltage Transmission Line Power Frequency. – IEEE International Conference on Power System Technology, 2006, DOI: 10.1109/ICPST.2006.321493.
14. Maruthi R., et al. Channakeshava. Computation and measurement of AC electric and magnetic field lateral profiles and longitudinal contours under transmission lines. – International Conference on Energy Management and Power Delivery EMPD '95, 1995, vol. 1, DOI: 0.1109/EMPD.1995.500727.
15. Rachedi B.A., et al. Evaluation of Electromagnetic Field Produced by Multi-Parallel High Voltage Lines. – IEEE International Conference on Intelligent Energy and Power Systems (IEPS), 2014, DOI:10.1109/IEPS.2014.6874197.
16. Feng G., Wang Ya., Zhang B. Study on Electromagnetic Environment of Multi-circuit Transmission Lines on Same Tower. – Joint International Conference on Power System Technology and IEEE Power India Conference, 2008, DOI: 10.1109/ICPST.2008.4745302.
17. Ogunsola A., Mariscotti A. Electromagnetic Compatibility in Railways: Analysis and Management. Springer, 2013, 568 p.
18. Xiaotian L., et al. EMC in Rail Transportation. – Energy Procedia, 2016, 104, pp. 526–531, DOI:10.1016/j.egypro.2016.12.089.
19. Baranowski S., et al. EMC Analysis of Railway Power Substation Modeling and Measurements Aspects. – Infrastructure Design, Signalling and Security in Railway, 2012, DOI:10.5772/37522.
20. Kircher R., et al. Electromagnetic Fields Related to High-Speed Transportation Systems. – Transportation Systems and Technology, 2018, 4(2), pp. 152–166, DOI: 0.17816 / transsyst201842152-166.
21. Oancea C.D., Calin F., Golea V. On the Electromagnetic Field in the Surrounding Area of Railway Equipment and Installations. – 2019 International Conference on Electromechanical and Energy Systems, 2019, DOI: 10.1109/SIELMEN.2019.8905871.
22. Lu N., et al. The Research on Electromagnetic Emission of Traction Network with Short-circuit Current Pulse. – IEEE Transactions on Transportation Electrification, 2021, DOI: 10.1109/tte.2021.3115578.
23. Zakaryukin V.P., Kryukov A.V. Slozhnonesimmetrichnye rezhimy elektricheskih sistem (Complex Asymmetric Modes of Electrical Systems). Irkutsk: Izd-vo Irkut. un-ta, 2005, 273 p.
24. Buyakova N.V., et al. Simulation of Electromagnetic Fields Generated by Overhead Power Linesand Railroad Traction Networks. – Energy Systems Research, 2021, vol . 4, No. 2, pp. 70–88.
25. Zakaryukin V.P., Kryukov A.V., Cherepanov A.V. Intellektual'nye tekhnologii upravleniya kachestvom elektroenergii (Intelligent Power Quality Management Technologies). Irkutsk: IrNITU, 2015, 218 p.
26. Carson I.R. Wave Propagation in Overhead Wires with Ground Return. – Bell System Technical Journal, 1926, vol. 5, pp. 539–554, DOI:10.1002/J.1538-7305.1926.TB00122.X.
Published
2022-03-14
Section
Article