Mathematical Model of Arc Quenching in the Adjacent Chambers of an RMKE-10 Multichamber Lightning Arrester

  • Vladimir Ya. FROLOV
  • Dmitriy V. IVANOV
  • Alexandr D. SIVAEV
  • Aleksandr N. CHUSOV
  • Alexandr S. CHISTYAKOV
  • Anna A. ROGOZHINA
Keywords: lightning protection, multichamber arrester, arc quenching, overlapping of arc discharges, mathematical modeling

Abstract

Multichamber arresters are widely used to protect overhead power lines from lightning surges. To work out recommendations on the multichamber arrester design taking into account the operating conditions, it is necessary to develop a mathematical model of the arc quenching processes in the multichamber arrester discharge chambers. In addition to the processes inside the discharge chambers, such a model should predict the range of multichamber arrester operating conditions in which overlapping of adjacent plasma jets outside the arrester shell does not occur. For this purpose, a mathematical model of the operation of an RMKE-10 multichamber arrester’s two adjacent discharge chambers was developed in the COMSOL Multiphysics software environment. In so doing, the time dependence of the current through the multichamber arrester was used, which was obtained during calculations on the developed model of the multichamber arrester test bench electrical circuit in the Matlab Simulink software environment. Calculations based on the model of two adjacent discharge chambers were carried out for two cases of the distance between the chambers. The conditions excluding the overlapping of the generated arc discharge jets are established. The theoretical and experimental data were compared, and the comparison results have confirmed the adequacy of the developed method for calculating the arc discharges sequentially produced in a multichamber arrester. The lines for further modernization of the multichamber arrester mathematical model have been determined.

Author Biographies

Vladimir Ya. FROLOV

(Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, Russia) – Professor of Higher School of High Voltage Energy, Dr. Sci. (Eng.)

Dmitriy V. IVANOV

(Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, Russia) – Docent of Higher School of High Voltage Energy, Cand. Sci. (Eng.).

Alexandr D. SIVAEV

(Streamer Inc., Saint-Petersburg, Russia) – Advisor to the General Director for Science and Technology, Cand. Sci. (Eng.).

Aleksandr N. CHUSOV

(Streamer Inc., Saint-Petersburg, Russia) – Researcher

Alexandr S. CHISTYAKOV

(Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, Russia) – Student of Higher School of High Voltage Energy

Anna A. ROGOZHINA

(Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, Russia) – Student of Higher School of High Voltage Energy

References

1. Podporkin G.V., et al. Overhead Lines Lightning Protection by Multi-Chamber Arresters and Insulator-Arresters. – IEEE Transactions on Power Delivery, 2011, vol. 26, No. 1, pp. 214–221, DOI:10.1109/TPWRD.2010.2076368.
2. Подпоркин Г.В., Енькин Е.Ю., Пильщиков В.Е. Разработка мультикамерной системы разрядников. – Электричество, 2013, № 1, с. 26–32.
3. Cайт АО «НПО «Стример» [Электрон. ресурс], URL: https://www.streamer.ru (дата обращения 30.03.2022).
4. Guo Z., et al. Three Dimensional Simulation of the Arc Inside an Insulator-Arrester with a Multichamber System. – AIP Advances, 2016, vol. 6, No. 4, 045117, DOI:10.1063/1.4948453.
5. Li Z., et al. Study on Impulse Quenching Based Multichamber Arc Quenching Structure. – AIP Advances, 2019, vol. 9, No. 8, 085104, DOI:10.1063/1.5113853.
6. Li Z., et al. Influence of Chamber Structure on Arc Quenching in Multigap System. – High Voltage, 2020, vol. 5, No. 3, pp. 313–318, DO10.1049/hve.2019.0064.
7. Wu D.,Wang J. Lightning Protection of 10 kV Distribution Lines by Multiple Breakpoints Arc-Extinguishing Lightning Protection Gap. – IEEE Transactions on Plasma Science, 2020, vol. 48, pp. 531–536, DOI: 10.1109/TPS.2020.2965956.
8. Wu D., Ji Z.;Wang J. Simulation and Experimental Analysis of Multi-Chamber Arc-Quenching Arresters (MCAA) for 10 kV Transmission Lines. – Energies, 2021, vol. 14, 6185.
9. Иванов Д.В., Подпоркин Г.В., Фролов В.Я. Моделирование нестационарных плазменных процессов в разрядной камере мультикамерного разрядника для молниезащиты линий электропередачи. – Известия НТЦ Единой энергетической системы, 2016, № 2 (75), с. 128–133.
10. Frolov V.Y., Ivanov D.V., Belsky R.A. Increasing of Operation Security and of Breaking Capacity of Surge Arresters. – IEEE Сonference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 2017, 7910861, pp. 1520–1523, DOI:10.1109/EIConRus.2017.7910861.
11. Верещаго Е.Н., Костюченко В.И. Имитационная модель электрической дуги. – Электротехника, 2014, № 6, с. 36–42.
12. Сурис А.Л. Термодинамика высокотемпературных процессов: справочник. М.: Металлургия, 1985, 568 c.
13. Boulos M.I., Fauchais P., Pfender E. Thermal Plasmas: Fundamentals and Applications, vol. 1. New York: Plenum Press, 1994, 467 с.
14. Devoto R.S. Transport Properties of Ionized Monatomic Gases. – Physics of Fluids, 1966, vol. 9, No. 6, pp. 1230–1240, DOI: 10.1063/1.1761825.
15. Devoto R.S. Simplified Expressions for the Transport Properties of Ionized Monatomic Gases. – Physics of Fluids, 1967, vol. 10, No. 10, pp. 2105–2112, DOI: 10.1063/1.1762005.
16. Rat V., et al. Treatment of Non-Equilibrium Phenomena in Thermal Plasma Flows. – Journal of Physics D: Appl. Phys, 2008, vol. 41, No. 18, 183001, DOI: 10.1088/0022-3727/41/18/183001.
17. Сайт COMSOL Multiphysics. [Электрон. ресурс], URL: https://www.comsol.com (дата обращения 30.03.2022).
18. Nordborg H., Iordanidis A.A. Self-Consistent Radiation Based Modelling of Electric Arcs: I. Efficient Radiation Approximations. – Journal of Physics D Applied Physics, 2008, vol. 41, No. 13, 135205, DOI:10.1088/0022-3727/41/13/135205.
19 Mürmann M., et al. Modeling and SImulation of the Current Quenching Behavior of a Line Lightning Protection Device. – Journal of Physics D Applied Physics, 2017, vol. 50, 105203, DOI:10.1088/1361-6463/aa560e.
20. Суперкомпьютерный центр «Политехнический» [Электрон. ресурс], URL: https://research.spbstu.ru/skc/? (дата обращения 30.03.2022).
#
1. Podporkin G.V., et al. Overhead Lines Lightning Protection by Multi-Chamber Arresters and Insulator-Arresters. – IEEE Transactions on Power Delivery, 2011, vol. 26, No. 1, pp. 214–221, DOI:10.1109/TPWRD.2010.2076368.
2. Podporkin G.V., En'kin E.Yu., Pil'shchikov V.E. Elektrichest-vo – in Russ. (Electricity), 2013, No. 1, pp. 26–32.
3. Website of JSC "NPO "Streamer" [Electron. resource], URL: https://www.streamer.ru (Date of appeal 30.03.2022).
4. Guo Z., et al. Three Dimensional Simulation of the Arc Inside an Insulator-Arrester with a Multichamber System. – AIP Advances, 2016, vol. 6, No. 4, 045117, DOI:10.1063/1.4948453.
5. Li Z., et al. Study on Impulse Quenching Based Multichamber Arc Quenching Structure. – AIP Advances, 2019, vol. 9, No. 8, 085104, DOI:10.1063/1.5113853.
6. Li Z., et al. Influence of Chamber Structure on Arc Quenching in Multigap System. – High Voltage, 2020, vol. 5, No. 3, pp. 313–318, DO10.1049/hve.2019.0064.
7. Wu D.,Wang J. Lightning Protection of 10 kV Distribution Lines by Multiple Breakpoints Arc-Extinguishing Lightning Protection Gap. – IEEE Transactions on Plasma Science, 2020, vol. 48, pp. 531–536, DOI: 10.1109/TPS.2020.2965956.
8. Wu D., Ji Z., Wang J. Simulation and Experimental Analysis of Multi-Chamber Arc-Quenching Arresters (MCAA) for 10 kV Transmission Lines. – Energies, 2021, vol. 14, 6185.
9. Ivanov D.V., Podporkin G.V., Frolov V.Ya. Izvestiya NTTS Edinoy energeticheskoy sistemy – in Russ. (Proceedings of the Scientific and Technical Center of the Unified Energy System), 2016, No. 2 (75), pp. 128–133.
10. Frolov V.Y., Ivanov D.V., Belsky R.A. Increasing of Operation Security and of Breaking Capacity of Surge Arresters. – IEEE Сonference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 2017, 7910861, pp. 1520–1523, DOI:10.1109/EIConRus.2017.7910861.
11. Vereshchago E.N., Kostyuchenko V.I. Elektrotekhnika – in Russ. (Electrical Engineering), 2014, No. 6, pp. 36–42.
12. Suris A.L. Termodinamika vysokotemperaturnyh protsessov: spravochnik (Thermodynamics of High Temperature Processes: Handbook). М.: Metallurgiya, 1985, 568 p.
13. Boulos M.I., Fauchais P., Pfender E. Thermal Plasmas: Fundamentals and Applications, vol. 1. New York: Plenum Press, 1994, 467 с.
14. Devoto R.S. Transport Properties of Ionized Monatomic Gases. – Physics of Fluids, 1966, vol. 9, No. 6, pp. 1230–1240, DOI: 10.1063/1.1761825.
15. Devoto R.S. Simplified Expressions for the Transport Properties of Ionized Monatomic Gases. – Physics of Fluids, 1967, vol. 10, No. 10, pp. 2105–2112, DOI: 10.1063/1.1762005.
16. Rat V., et al. Treatment of Non-Equilibrium Phenomena in Thermal Plasma Flows. – Journal of Physics D: Appl. Phys, 2008, vol. 41, No. 18, 183001, DOI: 10.1088/0022-3727/41/18/183001.
17. Website of COMSOL Multiphysics. [Electron. resource], URL: https://www.comsol.com (Date of appeal 30.03.2022).
18. Nordborg H., Iordanidis A.A. Self-Consistent Radiation Ba-sed Modelling of Electric Arcs: I. Efficient Radiation Approximations. – Journal of Physics D Applied Physics, 2008, vol. 41, No. 13, 135205, DOI:10.1088/0022-3727/41/13/135205.
19. Mürmann M., et al. Modeling and SImulation of the Current Quenching Behavior of a Line Lightning Protection Device. – Journal of Physics D Applied Physics, 2017, vol. 50, 105203, DOI:10.1088/1361-6463/aa560e.
20. Superkomp'yuternyy tsentr «Politekhnicheskiy» (Supercom-puter Center "Polytechnic") [Electron. resource], URL: https://research.spbstu.ru/skc/? (Date of appeal 30.03.2022)
Published
2022-03-30
Section
Article