A Single-Circuit Extra-High Voltage Line of Increased Transmission Capacity
Abstract
Conventional single-circuit EHV AC lines, widely used around the world, feature an essential drawback: in the case of most probable single-phase sustained failures, the line is fully disconnected. An advanced single-circuit EHV line is proposed, one phase of which is made as two semi-phases operating in parallel to each other. In emergency modes, one of these semi-phases is used as a backup phase, and two usual phases are equipped in the line middle part with series compensation devices for balancing the line operation mode. An algorithm for calculating normal operation modes has been developed. Taking the example of an advanced 500 kV line, the ratio between the transmission capacities of the proposed line and a conventional single-circuit line is shown. A scheme is proposed, with which it becomes possible, in the case of a sustained damage to one of the semi-phases or in case of damage to one of the phases, to switch over for operation in the post-emergency mode with the possibility of transmitting at least 50% of the power of the initial maximum operation mode. A technical and economic comparison of a conventional double-circuit and the advanced single-circuit lines was carried out.
References
2. Yu O.S. Economic and Technical Determinants of Power System Development. – IEEE Transactions on Power Apparatus and System, 1980, vol. PAS-99, No.5, pp. 1975–1983.
3. Guile A., Paterson W. Electrical Power Systems. Oxford, New York: Pergamon Press, 1977, vol. 1 and 2.
4. Bortnik I.M. 1200 kV Transmission Line in the USSR. The First Result of Operation. – CIGRE, 1988, 38-09.
5. Xie H.K., Wu K. EHV Transmission and Its Insulation: Under Planning and Construction in China. – IEEE Electrical Insulation Magazine, 1999, vol.15, No. 2, pp. 33–37, DOI:10.1109/57.753929.
6. Trudel G., Bernard S., Scott G. Hydro-Quebec's Defense Plan Against Extreme Contingencies. – IEEE Trans. Power Systems, 1999, vol. 14, No.3, pp. 958–960, DOI:10.1109/59.780908.
7. Silva A.O., et al. Reliability and Upgrading Studies of The 765 kV Itaipu Transmission System. – CIGRE, 2000, 22-101.
8. Zhou H., et al. The China Southern Power Grid: Solutions to Operation Risks and Planning Challenges. – IEEE Power & Energy Magazine, 2016, 14(4), pp. 72–78, DOI:10.1109/MPE.2016.2547283.
9. Дьяков А.Ф. и др. Электрические сети сверх- и ультравысокого напряжения ЕЭС России. Теоретические и практические основы: т. 1. Электропередачи переменного тока. М.: НТФ «Энергопрогресс» Корпорация «ЕЭЭК», 2012, 696 с.
10. Arrillaga J., Liu Y.H., Watson N.R. Flexible Power Transmission. The HVDC Options. John: Wiley &Sons, Ltd, 2007, 376 p.
11. Long W.F., Stovall J.P. Comparison of Costs and Benefits for DC and AC Transmission, CIGRE Symposium on DC and AC Transmission Interaction and Comparisons, Boston, USA, 1987, DOI: 10.2172/6662229.
12. Yafang L., et al. Study of 500 kV Compact Transmission Technology. – CIGRE, 1998, Rep.22/33/36-11.
13. Gingras J., Mailhot R., Lavergne J. Review of the Hydro-Quebec System Operation with Series Compensation, CIGRE, 2000, 38-101.
14. Самородов Г.И., Красильникова Т.Г., Кошевой К.Э. Пропускная способность дальних электропередач с установкой продольной компенсации – Электричество, 2020, № 3, c. 12−17.
15. Samorodov G.I., et al. Non-Conventional Reliable AC Transmission System for Power Delivery at Long and Very Long Distances. – IEEE/PES Transmission and Distribution Conference, Yokohama, Japan, 2002, vol. 2, DOI: 10.1109/TDC.2002.1177610.
16. Красильникова Т.Г., Самородов Г.И. Технико-экономические вопросы дальних электропередач переменного тока. Новосибирск: Изд-во НГТУ, 2021, 331 с.
17. Пат. RU2765656C1. Одноцепная линия электропередачи высокого или сверхвысокого напряжения / Г.И. Самородов, Т.Г. Красильникова, 2022.
18. Красильникова Т.Г., Самородов Г.И. Физико-технические основы дальних электропередач переменного тока. Новосибирск: Изд-во НГТУ, 2019, 300 с.
19. Беляков Н.Н. и др. Процессы при однофазном автоматическом повторном включении линий высоких напряжений. М.: Энергоатомиздат, 1991, 256 с.
20. Справочник по проектированию электрических сетей / под ред. Д.Л. Файбисовича. М.: ЭНАС, 2012, 376 с.
#
1. Jones B. New Approaches to the Design and Economics of EHV Transmission Plant. Pergamon Press, 1972, DOI:10.1016/c2013-0-05610-1.
2. Yu O.S. Economic and Technical Determinants of Power System Development. – IEEE Transactions on Power Apparatus and System, 1980, vol. PAS-99, No.5, pp. 1975–1983.
3. Guile A., Paterson W. Electrical Power Systems. Oxford, New York: Pergamon Press, 1977, vol. 1 and 2.
4. Bortnik I.M. 1200 kV Transmission Line in the USSR. The First Result of Operation. – CIGRE, 1988, 38-09.
5. Xie H.K., Wu K. EHV Transmission and Its Insulation: Under Planning and Construction in China. – IEEE Electrical Insulation Magazine, 1999, vol.15, No. 2, pp. 33–37, DOI:10.1109/57.753929.
6. Trudel G., Bernard S., Scott G. Hydro-Quebec's Defense Plan Against Extreme Contingencies. – IEEE Trans. Power Systems, 1999, vol. 14, No.3, pp. 958–960, DOI:10.1109/59.780908.
7. Silva A.O., et al. Reliability and Upgrading Studies of The 765 kV Itaipu Transmission System. – CIGRE, 2000, 22-101.
8. Zhou H., et al. The China Southern Power Grid: Solutions to Operation Risks and Planning Challenges. – IEEE Power & Energy Magazine, 2016, 14(4), pp. 72–78, DOI:10.1109/MPE.2016.2547283.
9. D'yakov А.F., et al. Elektricheskie seti sverh- i ul'travysokogo napryazheniya EES Rossii. Teoreticheskie i prakticheskie osnovy: t. 1. Elektroperedachi peremennogo toka (Electric Networks of Ultra- and Ultra-High Voltage of the UES of Russia. Theoretical and Practical Foundations: vol. 1. AC Power Transmission). М.: NTF «Energoprogress» Korporatsiya «EEEK», 2012, 696 p.
10 Arrillaga J., Liu Y.H., Watson N.R. Flexible Power Transmission. The HVDC Options. John: Wiley &Sons, Ltd, 2007, 376 p.
11. Long W.F., Stovall J.P. Comparison of Costs and Benefits for DC and AC Transmission, CIGRE Symposium on DC and AC Transmission Interaction and Comparisons, Boston, USA, 1987, DOI: 10.2172/6662229.
12. Yafang L., et al. Study of 500 kV Compact Transmission Technology. – CIGRE, 1998, Rep.22/33/36-11.
13. Gingras J., Mailhot R., Lavergne J. Review of the Hydro-Quebec System Operation with Series Compensation, CIGRE, 2000, 38-101.
14. Samorodov G.I., Krasil'nikova Т.G., Koshevoy K.E. Elektri-chestvo – in Russ. (Electricity), 2020, No. 3, pp. 12−17.
15. Samorodov G.I., et al. Non-Conventional Reliable AC Transmission System for Power Delivery at Long and Very Long Distances. – IEEE/PES Transmission and Distribution Conference, Yokohama, Japan, 2002, vol. 2, DOI: 10.1109/TDC.2002.1177610.
16. Krasil'nikova Т.G., Samorodov G.I. Tekhniko-ekonomicheskie voprosy dal'nih elektroperedach peremennogo toka (Technical and economic issues of long-distance AC power transmission). Novosibirsk: Izd-vo NGTU, 2021, 331 p.
17. Pаt. RU2765656C1. Odnotsepnaya liniya elektroperedachi vysokogo ili sverhvysokogo napryazheniya (Single-Chain High or Ultra-High Voltage Power Transmission Line) / G.I. Samorodov, T.G. Krasil'nikova, 2022.
18. Krasil'nikova Т.G., Samorodov G.I. Fiziko-tekhnicheskie osnovy dal'nih elektroperedach peremennogo toka (Physical and Technical Fundamentals of Long-Distance AC Power Transmission). Novosibirsk: Izd-vo NGTU, 2019, 300 p.
19. Belyakov N.N., et al. Protsessy pri odnofaznom avtomaticheskom povtornom vklyuchenii liniy vysokih napryazheniy (Processes with Single-Phase Automatic Reactivation of High Voltage Lines). М.: Energoatomizdat, 1991, 256 p.
20. Spravochnik po proektirovaniyu elektricheskih setey (Hand-book on the Design of Electrical Networks) / Under ed. D.L. Faibisovich. М.: ENAS, 2012, 376 p.