Diagnostics of Power Transformer Main Insulation According to the Oil Dielectric Strength Statistical Criterion

  • Aleksandr N. NAZARYCHEV
  • Ol'ga S. MEL'NIKOVA
  • Il'ya N. SULYNENKOV
Keywords: diagnostics, power transformer, main insulation, transformer oil, variation coefficient, electrical strength statistical criterion, technical condition

Abstract

Improvement of methods for assessing the technical condition of power transformers continues to be among urgent operation problems at power companies. A set of studies and calculations of the power transformer main insulation electrical strength has been carried out based on determining the transformer oil electrical strength statistical parameters with taking into account regulatory procedures and the newly developed method of statistical characteristics. The results obtained from calculations of the variation coefficient and the average breakdown voltage of operating oils for the transformers under study are considered and analyzed taking into account the requirements of regulatory documents in force in the power industry. An oil electric strength statistical criterion is determined based on the standard and by the method of statistical characteristics using the Gnedenko–Weibull distribution. A dependence of the oil electric strength statistical criterion limiting values on the power transformer power is obtained. An approach to diagnosing the power transformers’ main insulation electrical strength according to the oil electrical strength statistical criterion is proposed. The distribution histograms of the oil electrical strength statistical criterion and the oil breakdown voltages lower limit are shown. A positive correlation has been established between the oil electric strength statistical criterion and the variation coefficient based on a comparison of the statistical parameters obtained using the conventional diagnostic method and the one proposed in the ongoing study. The values of the operational transformer oil electrical strength statistical criterion for operating transformers are compared with the calculated limit values of this parameter. It has been found from the study results that with decreasing the electrical strength margin, the number of transformers that meet the electrical strength statistical criterion requirements decreases for all values of the transformer nominal capacity.

Author Biographies

Aleksandr N. NAZARYCHEV

(Saint Petersburg Mining University, Saint Petersburg, Russia) – Professor of the Electrical Power Engineering and Electromechanics Dept., Dr. Sci. (Eng.)

Ol'ga S. MEL'NIKOVA

(Ivanovo State Power Engineering University named after V.I. Lenin, Ivanovo,
Russia) – Docent of the High-Voltage Electric Power Engineering, Electrical Engineering and Electrophysics Dept., Cand. Sci. (Eng.)

Il'ya N. SULYNENKOV

(Ivanovo State Power Engineering University named after V.I. Lenin, Ivanovo, Russia) – Docent of the Power Plants, Substations and Diagnostics of Electrical Equipment Dept., Cand. Sci. (Eng.)

References

1. Положение ПАО «Россети» «О единой технической политике в электросетевом комплексе» (Приложение 1 к решению Совета директоров ПАО «Россети» (протокол заседания от 02.04.2021 № 450), 223 с.
2. Концепция Цифровая трансформация 2030 (Утв. Советом директоров ПАО «Россети» 21.12.2018), 31 с.
3. Soni R., Mehta B. Review on Asset Management of Power Transformer by Diagnosing Incipient Faults and Faults Identification Using Various Testing Methodologies. – Engineering Failure Analysis, 2021, 128(2), 105634, DOI: 10.1016/j.engfailanal.2021.105634.
4. Alqudsi A., El-Hag A. Assessing the Power Transformer Insulation Health Condition Using a Feature-Reduced Predictor Mode. – IEEE Transactions on Dielectrics and Electrical Insulation, 2018, vol. 25, No. 3, pp. 853–862, DOI: 10.1109/TDEI.2018.006630.
5. Серебряков А.С., Семёнов Д.А. Определение оставшегося ресурса главной изоляции распределительных трансформаторов. – Электротехника, 2013, № 6, с. 2–8.
6. Дарьян Л.А., Полищук В.П., Шурупов А.В. Взрывобезопасность и взрывозащищенность высоковольтного маслонаполненного оборудования электрических станций и подстанций. М.: Престиж АРТ, 2020, 184 с.
7. CIGRE Brochure 537. Guide for Transformer Fire Safety Practices. Working Group A2.33C4.39, June 2013.
8. Майоров А.В. и др. Прогнозирование срока службы силовых трансформаторов и автотрансформаторов электрических сетей. – Энергетик, 2018, № 11, с. 17–20.
9. Назарычев А.Н., Пугачев А.А., Андреев Д.А. Риск-ориентированное управление эксплуатацией электрооборудования с учетом его технического состояния. – Электроэнергия. Передача и распределение, 2020, № 6 (63), с. 134–135.
10. Назарычев А.Н. и др. Управление старением трансформаторов систем нормальной эксплуатации АЭС на основе риск-ориентированного подхода. – Энергетик, 2022, № 3, с. 7–13.
11. Приказ Министерства энергетики РФ от 26.07.2017 № 676 «Об утверждении методики оценки технического состояния основного технологического оборудования и линий электропередачи электрических станций и электрических сетей» [Электрон. ресурс], URL: https://base.garant.ru/71779722 (дата обращения 26.05.2022).
12. Приказ Минэнерго России от 17 марта 2020 г. № 192 "О внесении изменений в методику оценки технического состояния основного технологического оборудования и линий электропередачи электрических станций и электрических сетей, утверждённую приказом Минэнерго России от 26 июля 2017 г. № 676" [Электрон. ресурс] https://base.garant.ru/74035686 (дата обращения 26.05.2022).
13.  СТО 34.01-23.1-001-2017. Объем и нормы испытаний электрооборудования. (Утв. Распоряжением ПАО Россети 29.05.2017 № 280р), 262 с.
14. ГОСТ 6581-75 (СТ СЭВ 3166-81). Материалы электроизоляционные жидкие. Методы электрических испытаний. М.: Стандартинформ, 2008, 18 с.
15. Тихомиров П.М. Расчёт трансформаторов. М.: Энергоатомиздат, 1986, 528 с.
16. Кучинский Г.С., Кизеветтер В.Е., Пинталь Ю.С. Изоляция установок высокого напряжения. М.: Энергоатомиздат, 1987, 368 с.
17. ГОСТ 9680-77. Трансформаторы силовые мощностью 0,01 кВ∙А и более. Ряд номинальных мощностей. М.: Изд-во стандартов, 1977, 4 с.
18. Siodla K., Ziomek W., Kuffel E. The Volume and Area Effect in Transformer Oil. – IEEE International IEEE International Symposium on Electrical Insulation, 2002, DOI:10.1109/ELINSL.2002.995950.
19. Weber K.H., Endicott H.S. Area Effect and Its Extremal Basis for the Electric Breakdown of Transformer Oil. – Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 1956, vol. 75, No. 3, pp. 371–381, DOI:10.1109/AIEEPAS.1956.4499314.
20. Kurita H., Hasegawa T., Kimura K. Dielectric Breakdown Characteristics of Clean Oil, – IEEE International Symposium on Electrical Insulation, 1992, pp. 433–436, DOI:10.1109/ELINSL.1992.246965.
21. Панов А.В., Морозова Т.И. Электрические характеристики и методы расчёта главной изоляции мощных высоковольтных трансформаторов. – Труды ВЭИ. Вопросы трансформаторостроения, 1969, вып. 79, с. 12–32.
22. Митькин Ю.А., Мельникова О.С. Влияние мощности и напряжения трансформаторов на статистические характеристики электрической прочности масляных каналов главной изоляции. – Вестник ИГЭУ, 2012, № 4, с. 17–21.
23. Мельникова О.С. Совершенствование методов расчета изоляции силовых трансформаторов. – Электричество, 2022, № 1, с. 46–52.
24. Назарычев А.Н., Крупенев Д.С. Надежность и оценка технического состояния оборудования систем электроснабжения. Новосибирск: Наука, 2020, 224 с.
25. DIN EN 60296 VDE 0370-1:2012-12. Fluids for Electrotechnical Applications. Unused Mineral Insulating Oils for Transformers and Switchgear 2012, 30 р.
26. IEC 60156 – 2018. Insulating Liquids – Determination of the Breakdown Voltage at Power Frequency – Test method, 2018, 20 p.
27. ASTM D1816-12(2019). Standard Test Method for Dielectric Breakdown Voltage of Insulating Liquids Using VDE Electrodes, 2019 [Электрон. ресурс], URL: https://www.astm.org/d1816-12r19.html (дата обращения 26.05.2022).
28. Митькин Ю.А., Мельникова О.С. Метод определения статистических характеристик электрической прочности трансформаторного масла с применением распределения Гнеденко–Вейбулла по результатам малой экспериментальной выборки. – Вестник ИГЭУ, 2014, № 2, с. 18–25.
29. Gumbel E.J. Statistics of Extremes: Echo Point Books and Media, 2013, p. 396
#
1. Polozhenie PAO «Rosseti» «O edinoy tekhnicheskoy politike v elektrosetevom komplekse» (Prilozhenie 1 k resheniyu Soveta direktorov PAO «Rosseti» (protokol zasedaniya ot 02.04.2021 № 450) (The Regulation of PJSC ROSSETI "On the Unified Technical Policy in the Electric Grid Complex" (Appendix 1 to the Decision of the Board of Directors of PJSC ROSSETI (Minutes of the meeting dated 02.04.2021 No. 450)), 223 p.
2. Kontseptsiya Tsifrovaya transformatsiya 2030 (Utv. Sovetom direktorov PAO «Rosseti» 21.12.2018) (Digital Transformation 2030 Concept (Approved by the Board of Directors of PJSC Rosseti on 21.12.2018)), 31 с.
3. Soni R., Mehta B. Review on Asset Management of Power Transformer by Diagnosing Incipient Faults and Faults Identification Using Various Testing Methodologies. – Engineering Failure Analysis, 2021, 128(2), 105634, DOI: 10.1016/j.engfailanal.2021.105634.
4. Alqudsi A., El-Hag A. Assessing the Power Transformer Insulation Health Condition Using a Feature-Reduced Predictor Mode. – IEEE Transactions on Dielectrics and Electrical Insulation, 2018, vol. 25, No. 3, pp. 853–862, DOI: 10.1109/TDEI.2018.006630.
5. Serebryakov A.S., Semyonov D.A. Elektrotekhnika – in Russ. (Electrical Engineering), 2013, No. 6, pp. 2–8.
6. Dar'yan L.A., Polishchuk V.P., Shurupov A.V. Vzryvobezopasnost' i vzryvozashchishchennost' vysokovol'tnogo maslonapolnennogo oborudovaniya elektricheskih stantsiy i podstantsiy (Explosion Safety and Explosion Protection of High-Voltage Oil-Filled Equipment of Power Stations and Substations). М.: Prestizh ART, 2020, 184 p.
7. CIGRE Brochure 537. Guide for Transformer Fire Safety Practices. Working Group A2.33C4.39, June 2013.
8. Mayorov А.V., et al. Energetik – in Russ. (Power Engineer), 2018, No. 11, pp. 17–20.
9. Nazarychev A.N., Pugachev A.A., Andreev D.А. Elektroenergiya. Peredacha i raspredelenie – in Russ. (Electricity. Transmission and Distribution), 2020, No. 6 (63), pp. 134–135.
10. Nazarychev A.N., et al. Energetik – in Russ. (Power Engineer), 2022, No. 3, pp. 7–13.
11. Prikaz Ministerstva energetiki RF ot 26.07.2017 № 676 (Order of the Ministry of Energy of the Russian Federation No. 676 dated 26.07 2017) [Electron. resource], URL: https://base.garant.ru/71779722 (Date of appeal 26.05.2022).
12. Prikaz Minenergo Rossii ot 17 marta 2020 g. № 192 (Order of the Ministry of Energy of the Russian Federation No. 192 dated March 17, 2020) [Electron. resource] https://base.garant.ru/74035686 (Date of appeal 26.05.2022).
13. SТО 34.01-23.1-001-2017. Obem i normy ispytaniy elektrooborudovaniya. (Utv. Rasporyazheniem PAO Rosseti 29.05.2017 № 280r) (Scope and Standards of Testing of Electrical Equipment. (Approved by the Order of PJSC Rosseti No. 280r dated 29.05.2017)), 262 p.
14. GОSТ 6581-75 (SТ SEV 3166-81). Materialy elektroizolyatsionnye zhidkie. Metody elektricheskih ispytaniy (Electrical Insulating Liqu-id Materials. Electrical Test Methods). М.: Standartinform, 2008, 18 p.
15. Tihomirov P.М. Raschyot transformatorov (Calculation of Transformers). М.: Energoatomizdat, 1986, 528 p.
16. Kuchinskiy G.S., Kizevetter V.E., Pintal' Yu.S. Izolyatsiya ustanovok vysokogo napryazheniya (Isolation of High Voltage Installations). М.: Energoatomizdat, 1987, 368 p.
17. GОSТ 9680-77. Transformatory silovye moshchnost'yu 0,01 kV∙A i bolee. Ryad nominal'nyh moshchnostey (Power Transformers from 0,01 kVA and above. Series of Power Ratings). М.: Izd-vo standartov, 1977, 4 p.
18. Siodla K., Ziomek W., Kuffel E. The Volume and Area Effect in Transformer Oil. – IEEE International IEEE International Symposium on Electrical Insulation, 2002, DOI:10.1109/ELINSL.2002.995950.
19. Weber K.H., Endicott H.S. Area Effect and Its Extremal Basis for the Electric Breakdown of Transformer Oil. – Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 1956, vol. 75, No. 3, pp. 371–381, DOI:10.1109/AIEEPAS.1956.4499314.
20. Kurita H., Hasegawa T., Kimura K. Dielectric Breakdown Characteristics of Clean Oil, – IEEE International Symposium on Electrical Insulation, 1992, pp. 433–436, DOI:10.1109/ELINSL. 1992.246965.
21. Panov A.V., Morozova T.I. Trudy VEI. Voprosy Transformatoro-stroeniya – in Russ. (Proceedings of the VEI. Questions of transformer construction), 1969, iss. 79, pp. 12–32.
22. Mit'kin Yu.A., Mel'nikova O.S. Vestnik IGEU – in Russ. (Vestnik of ISPEU), 2012, No. 4, pp. 17–21.
23. Mel'nikova O.S. Elektrichestvo – in Russ. (Electricity), 2022, No. 1, pp. 46–52.
24. Nazarychev A.N., Krupenev D.S. Nadezhnost' i otsenka tekhnicheskogo sostoyaniya oborudovaniya sistem elektrosnabzheniya (Reliability and Assessment of the Technical Condition of the Equipment of Power Supply Systems). Novosibirsk: Nauka, 2020, 224 p.
25. DIN EN 60296 VDE 0370-1:2012-12. Fluids for Electrotechnical Applications. Unused Mineral Insulating Oils for Transformers and Switchgear 2012, 30 р.
26. IEC 60156 – 2018. Insulating Liquids – Determination of the Breakdown Voltage at Power Frequency – Test method, 2018, 20 p.
27. ASTM D1816-12(2019). Standard Test Method for Dielectric Breakdown Voltage of Insulating Liquids Using VDE Electrodes, 2019 [Electron. resource], URL: https://www.astm.org/d1816-12r19.html (Date of appeal 26.05.2022).
28. Mit'kin Yu.A., Mel'nikova O.S. Vestnik IGEU – in Russ. (Vestnik of ISPEU), 2014, No. 2, pp. 18–25.
29. Gumbel E.J. Statistics of Extremes: Echo Point Books and Media, 2013, p. 396
Published
2022-05-26
Section
Article