A SiC MOSFET Isolated DC/DC Converter for a Hybrid Vehicle

  • Nikolay F. VERSHININ
  • Andrey M. KARPOV
  • Sergey V. KUZNETSOV
Keywords: power electronics, vehicle DC/DC converter, SOFC

Abstract

This article deals with development of a DC/DC converter for use as a device for charging the traction storage batteries of an unmanned vehicle with a solid-oxide fuel cell stack. A phase shift controlled 8 kW full-bridge DC/DC converter was modeled, developed, manufactured, and tested within the frame of a research work. The device operation principle is described. The device control system developed on the basis of the Cortex ARM STM32F407VGT6 controller uses original software. The software supports the converter operation in an automatic mode by receiving, from the central processor device, operation mode setting commands (including the current, voltage, and power setpoints) and transmitting the remote measurement data (input and output circuit voltages, and the power switches and housing temperatures). Communication with the vehicle central processor is performed using the CAN protocol as per the SAE J1939 standard. The CAN is a standard serial communication protocol (its support for real-time distributed control with multiplexing allows information to be exchanged between various vehicle components). The classic CAN frame format allows data transmission rates up to 1 Mbps and payloads up to 8 bytes per frame. However, the recently introduced format (a CAN flexible data transmission rate frame format) allows higher data transmission rates and payloads higher and longer than these ordinary values. The transmission rate in the developed converter is 250 kbps. The converter operates in the input voltage range from 180 to 250 V and output voltage range from 500 to 800 V. The output current limit is 10 A. The converter efficiency was estimated to be 93%.

Author Biographies

Nikolay F. VERSHININ

(Institute of Solid State Physics named after Yu.A. Osipyana RAS, Chernogolovka, Moscow region, Russia) – Senior Researcher at the Laboratory of Defective Structures Spectroscopy, Cand. Sci. (Eng.)

Andrey M. KARPOV

(Experimental Plant of Scientific Instrumentation, Chernogolovka, Moscow region, Russia) – Head of the Bureau

Sergey V. KUZNETSOV

(Institute of Solid State Physics named after Yu.A. Osipyana RAS, Chernogolovka, Moscow region, Russia) – Junior Research Assistant at the Laboratory of Defective Structures Spectroscopy

References

1. Вершинин Н.Ф. и др. 6кВт преобразователь для согласования батареи ТОТЭ с энергосистемой электротранспортного средства. – Топливные элементы и энергоустановки на их основе, 2020, DOI 10.26201/ISSP.2021/FC.64.
2. Controller Area Network (CAN) Standards [Электрон. ресурс], URL: https://blog.ansi.org/2017/02/controller-area-network-can-standards-iso-11898 (дата обращения 07.06.2022).
3. Краткий обзор протокола CAN. Часть 1 [Электрон. ресурс], URL: https://www.micromax.ru/solution/theory-practice/articles/2160 (дата обращения 07.06.2022).
4. Краткий обзор протокола CAN. Часть 2 [Электрон. ресурс], URL: http://www.micromax.ru/about/articles/2161 (дата обращения 07.06.2022).
5. Chen G., et al. An Optimized Modulation Method for Full-Bridge/Push-Pull Bi-Directional DC-DC Converter with Wide-Range ZVS and Reduced Spike Voltage. – IECON 2014, 2014, pp. 1247–1253, DOI:10.1109/IECON.2014.7048662.
6. Kollipara N., et al. Phase Control and Power Optimization of LLC Converter. – IEEE International Symposium on Circuits and Systems (ISCAS), 2019, DOI: 10.1109/ISCAS.2019.8702652.
7. Bhaskar D., Vishwanathan N. Full Bridge Series Resonant Inverter for Induction Cooking Application. – IEEE 5th India International Conference on Power Electronics (IICPE), 2012, DOI: 10.1109/IICPE.2012.6450370.
8. Kato H., et al. Power Efficiency Improvement of the Full Bridge Current Resonant DC-DC Converter. – IEEE 33rd International Telecommunications Energy Conference (INTELEC), 2011, DOI: 10.1109/INTLEC.2011.6099898.
9. Shi K., et.al. A Novel Phase-Shift Dual Full-Bridge Converter with Full Soft-Switching Range and Wide Conversion Range. – IEEE Transactions on Power Electronics, 2016, vol. 31, p 7747-7760, DOI: 10.1109/TPEL.2015.2512848.
10. Li H., et al. A 6.6kW SiC Bidirectional On-board Charger. – IEEE Applied Power Electronics Conference and Exposition (APEC), 2018, DOI: 10.1109/APEC.2018.8341164.
11. Pat. US10892678B2. Method and Apparatus for Manuel Bidirectional Operation of Phase-Shift Full-Bridge Converter Using Inductor Pre-Charging / M.E. Rodriguez, M.-A. Kutschak, D.M. Herrera, 2021.
12. Pat. US20160149498A1. Method of Controlling Phase-Shift Full-Bridge Converter in Light Load Operation/ Z.-Y. Wu, T.-C. Leung, 2016.
13. Pat. US10707775B2. Method and Apparatus for Multi-Phase Shift Power Converter Control / M.J. Harrison, D.R. Zimmanck, M. Fornage, 2020.
14. Вершинин Н.Ф. и др. АСУ Макета Энергоустановки на ТОТЭ для опорного пункта арктической зоны РФ. Сравнение рабочих характеристик DC/DC преобразователей с гальванической развязкой и без нее для систем выдачи мощности батареи ТОТЭ. – Топливные элементы и энергоустановки на их основе, 2021, с. 89–90.
15. Escudero M., et al. Modulation Scheme for the Bidirectional Operation of the Phase-Shift Full-Bridge Power Converter. – IEEE Transactions on Power Electronics, 2020, vol. 35, iss. 2, pp. 1377–1391, DOI: 10.1109/TPEL.2019.2923804.
16. Lo Yu-K., et al. Phase-Shifted Full-Bridge Series-Resonant DC–DC Converters for Wide Load Variations. – IEEE Transactions on Industrial Electronics, 2011, vol. 58 (6), pp. 2572–2575, DOI: 10.1109/TIE.2010.2058076.
17. Pat. US9789774B2. Charger for Vehicles / J.Yo. Yang, et al., 2017.
18. Вершинин Н.Ф. и др. Характеристики 5кВт 48-вольтного DC/DC-преобразователя без гальванической развязки системы выдачи мощности батареи ТОТЭ для энергосистемы опорного пункта арктической зоны РФ. – Топливные элементы и энергоустановки на их основе, 2021, с. 190–191, DOI: 10.26201/ISSP.2021/FC.63
---
Работа выполнена в ИФТТ РАН при поддержке гранта РНФ 17-79-30071П "Разработка научно обоснованных путей оптимизации мощностных и массогабаритных характеристик батарей ТОТЭ планарной конструкции и создание топливного процессора для высокоэффективных транспортных и стационарных энергоустановок"
#
1. Vershinin N.F., et al. Toplivnye elementy i energoustanovki na ih osnove – in Russ. (Fuel Cells and Power Plants Based on Them), 2020, DOI 10.26201/ISSP.2021/FC.64.
2. Controller Area Network (CAN) Standards [Electron. resource], URL: https://blog.ansi.org/2017/02/controller-area-network-can-stan-dards-iso-11898 (Date of appeal 07.06.2022).
3. Kratkiy obzor protokola CAN. Chast' 1 (A Brief Overview of the CAN Protocol. Part 1) [Electron. resource], URL: https://www.micromax.ru/solution/theory-practice/articles/2160 (Date of appeal 07.06.2022).
4. Kratkiy obzor protokola CAN. Chast' 2 (A Brief Overview of the CAN Protocol. Part 2) [Electron. resource], URL: http://www.micromax.ru/about/articles/2161 (Date of appeal 07.06.2022).
5. Chen G., et al. An Optimized Modulation Method for Full-Bridge/Push-Pull Bi-Directional DC-DC Converter with Wide-Range ZVS and Reduced Spike Voltage. – IECON 2014, 2014, pp. 1247–1253, DOI:10.1109/IECON.2014.7048662.
6. Kollipara N., et al. Phase Control and Power Optimization of LLC Converter. – IEEE International Symposium on Circuits and Systems (ISCAS), 2019, DOI: 10.1109/ISCAS.2019.8702652.
7. Bhaskar D., Vishwanathan N. Full Bridge Series Resonant Inverter for Induction Cooking Application. – IEEE 5th India International Conference on Power Electronics (IICPE), 2012, DOI: 10.1109/IICPE.2012.6450370.
8. Kato H., et al. Power Efficiency Improvement of the Full Bridge Current Resonant DC-DC Converter. – IEEE 33rd International Telecommunications Energy Conference (INTELEC), 2011, DOI: 10.1109/INTLEC.2011.6099898.
9. Shi K., et.al. A Novel Phase-Shift Dual Full-Bridge Converter with Full Soft-Switching Range and Wide Conversion Range. – IEEE Transactions on Power Electronics, 2016, vol. 31, p 7747-7760, DOI: 10.1109/TPEL.2015.2512848.
10. Li H., et al. A 6.6kW SiC Bidirectional On-board Charger. – IEEE Applied Power Electronics Conference and Exposition (APEC), 2018, DOI: 10.1109/APEC.2018.8341164.
11. Pat. US10892678B2. Method and Apparatus for Manuel Bidirectional Operation of Phase-Shift Full-Bridge Converter Using Inductor Pre-Charging / M.E. Rodriguez, M.-A. Kutschak, D.M. Her-rera, 2021.
12. Pat. US20160149498A1. Method of Controlling Phase-Shift Full-Bridge Converter in Light Load Operation/ Z.-Y. Wu, T.-C. Leung, 2016.
13. Pat. US10707775B2. Method and Apparatus for Multi-Phase Shift Power Converter Control / M.J. Harrison, D.R. Zimmanck, M. Fornage, 2020.
14. Vershinin N.F., et al. Toplivnye elementy i energoustanovki na ih osnove – in Russ. (Fuel Cells and Power Plants Based on Them), 2021, pp. 89–90.
15. Escudero M., et al. Modulation Scheme for the Bidirectional Operation of the Phase-Shift Full-Bridge Power Converter. – IEEE Transactions on Power Electronics, 2020, vol. 35, iss. 2, pp. 1377–1391, DOI: 10.1109/TPEL.2019.2923804.
16. Lo Yu-K., et al. Phase-Shifted Full-Bridge Series-Resonant DC–DC Converters for Wide Load Variations. – IEEE Transactions on Industrial Electronics, 2011, vol. 58 (6), pp. 2572–2575, DOI: 10.1109/TIE.2010.2058076.
17. Pat. US9789774B2. Charger for Vehicles / J.Yo. Yang, et al., 2017.
18. Vershinin N.F., et al. Toplivnye elementy i energoustanovki na ih osnove – in Russ. (Fuel Cells and Power Plants Based on Them), 2021, с. 190–191, DOI: 10.26201/ISSP.2021/FC.63
---
The work was carried out at the ISSP RAS with the support of the grant of the Russian Academy of Sciences 17-79-30071P "Development of scientifically based ways to optimize the power and weight-dimensional characteristics of planar TTE batteries and the creation of a fuel processor for highly efficient transport and stationary power plants"
Published
2022-06-07
Section
Article