Active Power Distribution Networks with Decentralized Multi-Agent Control Mode. Part 1

  • Aleksandr G. FISHOV
  • Anatoliy A. OSINTSEV
  • Yuriy V. KAKOSHA
  • Muhammadzhon Z. ODINABEKOV
Keywords: active distributed electrical network, multi-agent mode control system, network integrity restoration, Minigrid synchronization

Abstract

The article focuses on decentralization and multi-agent automatic control as applied to the key system tasks of managing the general mode of an electric grid with distributed generation. The list of these tasks includes maintaining active and reactive power balances in normal modes, emergency control, maintaining the power supply system operability in post-emergency modes, etc. The methods for decentralized solution of these tasks, which have been tested on power system physical models and in a pilot MiniGrid project, are proposed. The developed MiniGrid is integrated with an external electrical network using a control system that is an agent of a multi-agent system. A conclusion about the possibility of developing a technology for decentralized control of operation modes in electric networks with distributed small generation is drawn. In the first part of the article, the terminology used is given, and the concept of the subject of a system for multi-agent control of operation modes in electric networks with distributed generation is given. Matters concerned with multi-agent decentralized frequency and voltage closed-loop control in an electric network with distributed generation are considered.

Author Biographies

Aleksandr G. FISHOV

(Novosibirsk State Technical Uviversity, Novosibirsk, Russia) – Professor of the Automated Electric Power Systems Dept., Dr. Sci. (Eng.)

Anatoliy A. OSINTSEV

(Novosibirsk State Technical Uviversity, Novosibirsk, Russia) – Docent of the Power Plants Dept., Cand. Sci. (Eng.)

Yuriy V. KAKOSHA

(Novosibirsk State Technical Uviversity, Novosibirsk, Russia) – Postgraduate Student
of the Automated Electric Power Systems Dept.

Muhammadzhon Z. ODINABEKOV

(Novosibirsk State Technical Uviversity, Novosibirsk, Russia) – Master Student of the Automated Electric Power Systems Dept

References

1. Гуломзода Ф.Х. Новые технологии управления синхронизацией и восстановлением нормального режима электрических сетей с распределенной малой генерацией: дис. … канд. техн. наук, 2022, 186 с.
2. Фишов А.Г. Технические и экономические аспекты создания минигридов и их интеграции с централизованным энергоснабжением. – Энергетик, 2022, № 4, с. 27–34.
3. СТО Оперативно-диспетчерское управление в электроэнергетике. Регулирование частоты и перетоков активной мощности в ЕЭС и изолированно работающих энергосистемах России. Требования к организации и осуществлению процесса, техническим средствам. М.: ОАО РАО «ЕЭС России», 2007, 68 с.
4. ГОСТ Р 55890–2013. Единая энергетическая система и изолированно работающие энергосистемы. Оперативно-диспетчерское управление. Регулирование частоты и перетоков активной мощности. Нормы и требования. М.: Стандартинформ, 2014, 20 c.
5. Operation hand вook UCTE/ UCTE OH – Policy 1: Load-Frequency Control – Final Version (approved by SC on 19 March 2009) B. Secondary Control.
6. Волошин А.А., Жуков А.В., Архипов И.Л. Применение мультиагентных систем в электроэнергетике за рубежом и в России. – Вести в электроэнергетике, 2016, №№ 2–4.
7. Gupta R., et al. A Multi-Agent Framework for Operation of a Smart Grid. – Energy and Power Engineering, 2013, No. 5, pp.1330–1336, DOI:10.4236/epe.2013.54B252.
8. Хаджсаид Н., Сабоннадьер Ж.-К., Ангелье Ж.-П. Энергосистемы будущего: интеллектуальные сети. – REE, 2010, № 1, с. 96–110.
9. Хаджсаид Н., Сабоннадьер Ж.-К. Интеллектуальные энергосистемы: мотивация, ставки и перспективы. – Энергетика за рубежом. Приложение к журналу "Энергетик", 2014, № 3, с. 2–24.
10. IEEE Std 1547-2018. IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. NY: IEEE, 2018, 138 p.
11. Гуревич Ю.Е., Илюшин П.В. Особенности расчетов режимов в энергорайонах с распределённой генерацией. Н. Новгород: НИУ РАНХиГС, 2018, 280 с.
12. Balaguer I.J., et al. Сontrol for Grid-Connected and Intentional Islanding Operations of Distributed Power Generation. – IEEE Transactions on Industrial Electronics, 2011, vol. 58, No. 1, pp. 147–157, DOI:10.1109/TIE.2010.2049709.
13. Пат. RU2662728C2. Способ противоаварийного управления режимом параллельной работы синхронных генераторов в электрических сетях / А.Г. Фишов, Б.Б. Мукатов, А.И. Марченко, 2018.
#
1. Gulomzoda F.H. Novye tekhnologii upravleniya sinhronizatsiey i vosstanovleniem normal'nogo rezhima elektricheskih setey s raspredelennoy maloy generatsiey: dis. … kand. tekhn. nauk (New Technologies for Controlling the Synchronization and Restoration of the Normal Mode of Electric Networks with Distributed Small Generation: Dis. ... Cand. Sci. (Eng.)), 2022, 186 p.
2. Fishov A.G. Energetik – in Russ. (Power Engineer), 2022, No. 4, pp. 27–34.
3. SТО Operativno-dispetcherskoe upravlenie v elektroenergetike. Regulirovanie chastoty i peretokov aktivnoy moshchnosti v EES i izolirovanno rabotayushchih energosistemah Rossii. Trebovaniya k organizatsii i osushchestvleniyu protsessa, tekhnicheskim sredstvam (Operational Dispatch Management in the Electric Power Industry. Regulation of the Frequency and Overflows of Active Power in the UES and Isolated Operating Power Systems of Russia. Requirements for the Organization and Implementation of the Process, Technical Means). М.: OAO RAO «EES Rossii», 2007, 68 p.
4. GОSТ R 55890–2013. Edinaya energeticheskaya sistema i izolirovanno rabotayushchie energosistemy. Operativno-dispetcherskoe upravlenie. Regulirovanie chastoty i peretokov aktivnoy moshchnosti. Normy i trebovaniya (United Power System and Isolated Power Systems. Operative-Dispatch Management. Frequency Control and Control of Active Power. Norms and Requirements). М.: Standartinform, 2014, 20 p,
5. Operation hand вook UCTE/ UCTE OH – Policy 1: Load-Frequency Control – Final Version (approved by SC on 19 March 2009) B. Secondary Control.
6. Voloshin A.A., Zhukov A.V., Arhipov I.L. Vesti v elektroenergetike – in Russ. (News in the Electric Power Industry), 2016, No.No. 2–4.
7. Gupta R., et al. A Multi-Agent Framework for Operation of a Smart Grid. – Energy and Power Engineering, 2013, No. 5, pp.1330–1336, DOI:10.4236/epe.2013.54B252.
8. Hadzhsaid N., Sabonnad'er Zh.-K., Angel'e Zh.-P. REE, 2010, No. 1, pp. 96–110.
9. Hadzhsaid N., Sabonnad'er Zh.-K. Energetika za rubezhom. Prilozhenie k zhurnalu "Energetik" – in Russ. (Energy Abroad. Appendix to the "Energetik" Journal), 2014, No. 3, pp. 2–24.
10. IEEE Std 1547-2018. IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. NY: IEEE, 2018, 138 p.
11. Gurevich Yu.E., Ilyushin P.V. Osobennosti raschetov rezhi-mov v energorayonah s raspredelyonnoy generatsiey (Features of Mo-de Calculations in Power Districts with Distributed Generation). N. Novgorod: NIU RANHiGS, 2018, 280 p.
12. Balaguer I.J., et al. Сontrol for Grid-Connected and Intentional Islanding Operations of Distributed Power Generation. – IEEE Transactions on Industrial Electronics, 2011, vol. 58, No. 1, pp. 147–157, DOI:10.1109/TIE.2010.2049709.
13. Pаt. RU 2662728 C2. Sposob protivoavariynogo upravleniya rezhimom parallel'noy raboty sinhronnyh generatorov v elektricheskih setyah (Method of Mode Emergency Control of Parallel Operation of Synchronous Generators in Electrical Networks) / A.G. Fishov, B.B. Mukatov, A.I. Marchenko, 2018
Published
2022-08-11
Section
Article