Active Power Distribution Networks with Decentralized Multi-Agent Control Mode. Part 2
Abstract
The article considers the solution of system tasks concerned with controlling the overall mode of an electric network with distributed generation: maintaining active and reactive power balances in normal modes, emergency control when large disturbances of the normal mode occur, maintaining the power supply system operability in post-emergency modes, restoring the power system integrity and normal operation after it was disintegrated into isolated parts by an accident or emergency control system operation. Methods of solving these tasks in a decentralized manner are proposed, which have been tested on physical models of power systems and in a pilot project on Minigrid. The developed Minigrid is integrated with an external electric network using a control system that is an agent of a multiagent system. A conclusion is made about the possibility of developing a technology for decentralized control of the modes of electric networks with distributed small generation sources. In the first part [1], the terminology used is given, the concept of a subject of the multiagent control system of electric networks with distributed generation is given, and matters concerned with multiagent decentralized control of frequency and voltage in such networks are considered. The second part of the article presents the results of a study, on an active electric network physical model, of decentralized multiagent restoration of the integrity and normal operation of the network after its disintegration into isolated parts by an accident or emergency control system operation.
References
2. Shah S., et al. VSC-Based Active Synchronizer for Generators. − IEEE Transactions on Energy Conversion, 2018, vol. 33, No. 1, pp. 116–125, DOI:10.1109/TEC.2017.2728718.
3. Гежа Е.Н. и др. Cистемная автоматика для интеграции локальных систем электроснабжения с синхронной малой генерацией в электрические сети. − Релейщик, 2018, № 2 (32), с. 24–31.
4. Choi K.Yo., et al. Selective Frequency Synchronization Technique for Fast Grid Connection of Islanded Microgrid Using Prediction Method. − International Journal of Electrical Power and Energy Systems, 2019, vol. 111(4), pp. 114–124, DOI:10.1016/j.ijepes.2019.03.063.
5. Bellini A., Bifaretti S., Giannini F. A Robust Synchronization Method for Centralized Microgrids. − IEEE Transactions on Industry Applications, 2014, vol. 51, No. 2, pp. 1602–1609, DOI: 10.1109/TIA.2014.2339391.
6. Laaksonen H., Kauhaniemi K. Synchronized Re-Connection of Island Operated LV Microgrid Back to Utility Grid. − IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010, DOI:10.1109/ISGTEUROPE.2010.5638911.
7. Cho C., et al. Active Synchronizing Control of a Microgrid. − IEEE Transactions on Power Electronics, 2011, vol. 26, No. 12, pp. 3707–3719, DOI:10.1109/TPEL.2011.2162532.
8. Chen Z., et al. A Synchronization Control Method for Micro-Grid With Droop Control. − IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 519–524, DOI:10.1109/ECCE.2015.7309733.
9. Litwin M., Zielinski D., Gopakumar K. Remote Micro-Grid Synchronization without Measurements at the Point of Common Coupling. − IEEE Access, 2020, vol. 8, pp. 212753–212764, DOI:10.1109/ACCESS.2020.3040697.
10. Balaguer I.J., et al. Сontrol for Grid-Connected and Intentional Islanding Operations of Distributed Power Generation. – IEEE Transactions on Industrial Electronics, 2011, vol. 58, No. 1, pp. 147–157, DOI:10.1109/TIE.2010.2049709.
11. Пат. RU2752693C1. Способ удаленной синхронизации и восстановления нормального режима аварийно-разделенной электрической сети с генераторами / А.Г. Фишов, А.Х. Гуломзода, 2021
#
1. Fishov A.G., et al. Elektrichestvo – in Russ. (Electricity), 2022, No. 10, pp. 14−24.
2. Shah S., et al. VSC-Based Active Synchronizer for Generators. − IEEE Transactions on Energy Conversion, 2018, vol. 33, No. 1, pp. 116–125, DOI:10.1109/TEC.2017.2728718.
3. Gezha E.N., et al. Releyshchik – in Russ. (Relay Operator), 2018, No. 2 (32), pp. 24–31.
4. Choi K.Yo., et al. Selective Frequency Synchronization Technique for Fast Grid Connection of Islanded Microgrid Using Prediction Method. − International Journal of Electrical Power and Energy Systems, 2019, vol. 111(4), pp. 114–124, DOI:10.1016/j.ijepes.2019.03.063.
5. Bellini A., Bifaretti S., Giannini F. A Robust Synchronization Method for Centralized Microgrids. − IEEE Transactions on Industry Applications, 2014, vol. 51, No. 2, pp. 1602–1609, DOI: 10.1109/TIA.2014.2339391.
6. Laaksonen H., Kauhaniemi K. Synchronized Re-Connection of Island Operated LV Microgrid Back to Utility Grid. − IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010, DOI:10.1109/ISGTEUROPE.2010.5638911.
7. Cho C., et al. Active Synchronizing Control of a Microgrid. − IEEE Transactions on Power Electronics, 2011, vol. 26, No. 12, pp. 3707–3719, DOI:10.1109/TPEL.2011.2162532.
8. Chen Z., et al. A Synchronization Control Method for Micro-Grid With Droop Control. − IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 519–524, DOI:10.1109/ECCE.2015.7309733.
9. Litwin M., Zielinski D., Gopakumar K. Remote Micro-Grid Synchronization without Measurements at the Point of Common Coupling. − IEEE Access, 2020, vol. 8, pp. 212753–212764, DOI:10.1109/ACCESS.2020.3040697.
10. Balaguer I.J., et al. Сontrol for Grid-Connected and Intentional Islanding Operations of Distributed Power Generation. – IEEE Transactions on Industrial Electronics, 2011, vol. 58, No. 1, pp. 147–157, DOI:10.1109/TIE.2010.2049709.
11. Pаt. RU2752693C1. Sposob udalennoy sinhronizatsii i vosstanovleniya normal'nogo rezhima avariyno razdelennoy elektricheskoy seti s generatorami (A Method for Remote Synchronization and Restoration of the Normal Mode of an Emergency Divided Electrical Network with Generators)/ А.G. Fishov, A.H. Gulomzoda, 2021