Monitoring System of Surge Arrwsters on Electrical Transmission Lines

  • Ruslan K. BORISOV
  • Sergey S. ZHULIKOV
  • Pavel S. GLAZUNOV
  • Mikhail A. KOSHELEV
  • Harry Z. MIRZABEKYAN
  • Yuliya S. TURCHANINOVA
  • Yury V. MONAKOV
Keywords: hardware and software complex, surge arrester, total leakage current, impulse current, optical sensor, leakage current sensor, independent power supply, program module

Abstract

The hardware and software complex of remote monitoring of the high voltage line arresters (HVLA) under operating voltage is developed. The complex is a two-level distributed system with autonomous monitoring points. The main functional units of the complex are: a block of current sensors, a registration and communication device, an autonomous power supply, a receiving base station and an automated workplace (AWP). In addition to measuring the total leakage current and the number of trips, the system records the amplitude and duration of the lightning current pulses flowing through the HVLA. These parameters can be used for assessment of the HVLA residual resource and making decision on a possibility of its further operation. For information transfer the standard of a wireless communication LoRa which advantages are is chosen: high noise immunity, larger range of transfer of a radio signal (up to 10 km), low energy consumption and high penetration. Program modules are developed for the device of reception and transfer of primary information and an automated workplace. The hardware and software system will allow to prevent emergence of a contingency situation on power lines, quickly and more efficiently to plan service and repair work, to pass to operation of HVLA on technical condition.

Author Biographies

Ruslan K. BORISOV

BORISOV Ruslan K. (National Research University «Moscow Power Engineering Institute» —NRU «MPEI», Moscow, Russia) — Senior researcher, Cand. Sci. (Eng.)

Sergey S. ZHULIKOV

ZHULIKOV Sergey S. (NRU «MPEI», Moscow, Russia) — Associate Professor, Cand. Sci. (Eng.)

Pavel S. GLAZUNOV

GLAZUNOV Pavel S. (Moscow State University named after M.V. Lomonosov, Moscow, Russia) — Postgraduate student

Mikhail A. KOSHELEV

KOSHELEV Mikhail A. (NRU «MPEI», Moscow, Russia) — Associate Professor, Cand. Sci. (Eng.)

Harry Z. MIRZABEKYAN

MIRZABEKYAN Harry Z. (NRU «MPEI», Moscow, Russia) — Professor, Dr. Sci. (Eng.)

Yuliya S. TURCHANINOVA

TURCHANINOVA Yuliya S. (NRU «MPEI», Moscow, Russia) — Assistant lecturer

Yury V. MONAKOV

MONAKOV Yury V. (NRU «MPEI», Moscow, Russia) — Associate Professor, Cand. Sci. (Eng.)

References

Демьяненко К.Б. К вопросу о необходимости диагности­ки ОПН в процессе эксплуатации. — Электро, 2008, № 3.

Дмитриев В.Л. Диагностика ОПН в эксплуатации. Досто­верность оценки состояния. — Новости электротехники, 2007, № 5(47).

Дмитриев М.В. Регистрация числа срабатываний ОПН, необходимость или излишество. — Новости электротехники, 2008, 1(49).

Потапов В.Т., Потапов Т.В., А.В. и др. Волоконно-опти­ческие датчики магнитного поля и электрического тока на ос­нове эффекта Фарадея в кристаллах Bi12Ge020 и Bi12Si020. Спецвыпуск «Фотон-Экспресс». — Наука, 2005, № 6, с. 166-176.

Абраменкова И., Корнеев И., Троицкий Ю. Оптические датчики тока и напряжения. — Компоненты и Технологии, 2010, № 8, с. 60—64.

Пат. (на полезную модель) № 83340 (РФ). Бесконтактный термостабильный датчик напряженности постоянных и пере­менных электрических полей на основе электрооптического эффекта в кристалле Bi12Si020 (BSO)/ В.М Абусев., П.М. Ка­раваев. ООО «Силлениты», 2009.

Ярив А., Юх П. Оптические волны в кристаллах/Пер. с англ. М.: Мир, 1987, 616 с.

Вишневский В.М., Ляхов А.И., Портной С.Л., Шахнович И.В. Широкополосные беспроводные сети передачи информа­ции. М.: Техносфера, 2005, 592 с.

Шахнович И. Современные технологии беспроводной связи. М.: Техносфера, 2006, 287 с.

Современные телекоммуникации. Технологии и эконо­мика/Под общей ред. С.А. Довгого. М.: Эко-Трендз, 2003, 320 с.

Григорьев В.А., Лагутенко О.И., Распаев Ю.А. Сети и системы радиодоступа. М.: Эко-Трендз, 2005, 384 с.

Lee V.C. Energy harvesting for wireless sensor networks (dissertation). — University of California, Berkeley, California, USA,

Covic G.A. and J.T. Boys. Inductive Power Transfer. — Proc. of IEEE101(6), 2013, pp. 1276—1289.

Song M., Belov P., Kapitanova P. Wireless power transfer inspired by the modern trends in electromagnetic. Applied physics reviews, 4, 021102, 2017.

Abdin Z. et al. «Solar energy harvesting with the application of nanotechnology», Renewable and Sustainable Energy Reviews, 2013, 26, pp. 837—852.

Ahrend U., Kunig K., ABB Corporate Research Germany, «The Role of Energy Harvesting in Creating Reliable WSN», Energy Harvesting & Storage Europe — 2014. Berlin, 2014, April 01—02.

Виссарионов В.И., Дерюгина Г.В., Кузнецова В.А., Мали­нин Н.К. «Солнечная энергетика». МЭИ, 2008, 317 с.

#

Dem’yanenko K.B. Elektro — in Russ. (Electro), 2008, No. 3.

Dmitriyev V.L. Novosti elektrotekhniki — in Russ. (News of Electrical Engineering), 2007, No. 5(47).

Dmitriyev M.V. Novosti elektrotekhniki — in Russ. (News of Electrical Engineering), 2008, 1(49).

Potapov V.T., Potapov T.V. at al. Spetsvypusk «Foton-Ekspress» — in Russ. (Special edition «Foton-Ecspress»), 2005, No. 6, pp. 166—176.

Abramenkova I., Korneyev I., Troitskiy Yu. Komponenty i Tekhnologii — in Russ. (Komponents and Technologies), 2010, No. 8, pp. 60 — 64.

Pat. RF na poleznuyu model’ No. 83340. Beskontaktnyi termostabil’nyi datchik napryazhennosti postoyannykh i peremennykh elektricheskikh polei na osnove elektroopticheskogo effekta v kristalle BiifiiOfl (BSO) (Pat. RF for utility model No. 83340. Contactless thermostable sensor of constant and alternating electric field strength based on the electro-optical effect in a Bi12Si020 (BSO) crystal)/V.M. Abusev, P.M. Karavayev. LLC «Sillenity», 2009.

Yariv A., Yukh P. Opticheskiye volny v kristallakh/Per. s ang. Optical waves in crystals / Trans. from English). Moscow, Mir, 1987, 616 p.

Vishnevskiy V.M., Lyakhov A.I., Portnoy S.L., Shakhnovich I. V. Shirokopolosnye besprovodnye seti peredachi informatsii (Broadband Wireless Information Networks). Moscow, Tekhnosfera, 2005, 592 p.

Shakhnovich I. Sovremennye tekhnologii besprovodnoy svyazi (Modern wireless technology). Moscow, Tekhnosfera, 2006, 287 p.

Sovremennye telekommunikatsii. Tekhnologii i ekonomika/Pod obshchey red. S.A. Dovgogo (Modern telecommunications. Technology and Economics / Under the general ed. S.A. Dovgy). Moscow, Eko-Trends, 2003, 320 p.

Grigor’yev V.A., Lagutenko O.I., Raspayev Yu.A. Seti i sistemy radiodostupa (Radio Access Networks and Systems). Moscow, Eko-Trendz, 2005, 384 p.

Lee V.C. Energy harvesting for wireless sensor networks (dissertation). — University of California, Berkeley, California, USA, 2012.

Covic G.A. and J.T. Boys. Inductive Power Transfer. — Proc. of IEEE101(6), 2013, pp. 1276-1289.

Song M., Belov P., Kapitanova P. Wireless power transfer inspired by the modern trends in electromagnetic. Applied physics reviews, 4, 021102, 2017.

Abdin Z. et al. «Solar energy harvesting with the application of nanotechnology», Renewable and Sustainable Energy Reviews, 2013, 26, pp. 837-852.

Ahrend U., Kunig K. ABB Corporate Research Germany, «The Role of Energy Harvesting in Creating Reliable WSN», Energy Harvesting & Storage Europe - 2014. Berlin, 2014, April 01-02.

Vissarionov V.I., Derugina G.V., Kuznetsova V.A., Malinin N.K. «Solnechnaya energetika» («Solar energy»). Publ. of Moscow Power Engineering Institute, 2008, 317 p.

Published
2019-04-19
Section
Article