Lightning Initiation as a Consequence of Natural Thundercloud Evolution. Part 2. Pre-Streamer Stage

  • Dmitry I. IUDIN
  • Artem A. SYSSOEV
  • Vladimir A. RAKOV
Keywords: lightning initiation, hydrometeors, corona discharges, negative ions, elevated ionic conductivity regions, streamers, percolation theory

Abstract

The article presents the second part of the authors’ lightning initiation scenario, which is a continuation of the study [1]. In the first part it was shown that, if the detachment of electrons from negative ions is taken into account, the air breakdown field reduces by 15–30 %. This partially simplifies but does not solve the problem of lightning initiation in a thundercloud, the maximum electric fields in which are approximately an order of magnitude lower than the dielectric strength of air. This article addresses the lightning discharge inception scenario pre-streamer stage. It describes how a series of corona discharges that occur during collisions (nearly collisions) of hydrometeors seeds the cloud with decimeter-scale regions having increased ionic conductivity. The electric field at the poles of these regions enhances to a level necessary for positive streamers to appear. It is shown that, for a transition from millimeter-scale corona discharges to decimeter- or meter-scale streamers to occur, a spatiotemporal frequency of corona discharges on hydrometeors higher than 0,1 m-3s-1 is required, which may well be achieved in a typical thundercloud. The final stage, at which streamers oriented by the direction of a large-scale electric field are combined into a single plasma network, within which a hot leader channel forms, will be described in the coming part of the study.

Author Biographies

Dmitry I. IUDIN

(Privolzhsky Research Medical University; the Institute of Applied Physics of RAS, Nizhny Novgorod, Russia) – Head of the Medical Biophysics dept.; Leading Researcher, Dr. Sci. (Phys.-Math.), Dr. Sci. (Biol.)

Artem A. SYSSOEV

(Privolzhsky Research Medical University; the Institute of Applied Physics of RAS, Nizhny Novgorod, Russia) – Senior Teacher of the Medical Biophysics dept.; Junior Researcher, Cand. Sci. (Phys.-Math.)

Vladimir A. RAKOV

(University of Florida, Gainesville, USA) – Distinguished Professor and Director of the International Center for Lightning Research and Testing, Cand. Sci. (Eng.)

References

1. Иудин Д.И., Сысоев А.А., Раков В.А. Инициация молнии как следствие естественной эволюции грозового облака. Ч. 1. Роль отлипания в снижении критической разрядной напряжённости воздуха. – Электричество, 2022, № 11, с. 13–28.
2. Иудин Д.И. Зарождение молниевого разряда как индуцированный шумом кинетический переход. – Известия вузов. Радиофизика, 2017, т. 60, № 5, c. 418–441.
3. Iudin D.I., et al. Noise-Induced Kinetic Transition in Two-Component Environment. – Journal of Computational and Applied Mathematics, 2020, vol. 388 (5), DOI:10.1016/j.cam.2020.113268.
4. Malan D.J. Physics of Lightning. London: The English Universities Press, 1963, 176 p.
5. Macky W.A. Some Investigations on the Deformation and Breaking of Water Drops in Strong Electric Fields. – Proceedings of the Royal Society of London, 1931, series A 133 (822), pp. 565–587, DOI:10.1098/rspa.1931.0168.
6. Isichenko M.B. Percolation, Statistical Topography, and Transport in Random Media. – Reviews of Modern Physics, 1992, vol. 64(4), pp. 961–1043, DOI:10.1103/RevModPhys.64.961.
7. Кляцкин В.И. Статистическое описание диффузии пассивной примеси в случайном поле скоростей. – Успехи физических наук, 1994, т. 164, № 5, с. 531–544.
8. Кляцкин В.И. Кластеризация и диффузия частиц и плотности пассивной примеси в случайных гидродинамических потоках. – Успехи физических наук, 2003, т. 173, № 7, с. 689–710.
9. Бершадский А.Г. Крупномасштабные фрактальные структуры в лабораторной турбулентности, океане и астрофизике. – Успехи физических наук, 1990, т. 160, № 12, с. 189–194.
10. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Электродинамика сплошных сред. М.: Наука, 1982, 621 с.
11. Sartor J.D., Atkinson W.R. Charge Transfer between Raindrops. – Science, 1967, vol. 157(3794), pp. 37–52.
12. Dutton J. A Survey of Electron Swarm Data. – Journal Physical and Chemical Reference Data, 1975, vol. 4(3), pp. 577–856, DOI: 10.1063/1.555525.
13. Iudin D.I., et al. Formation of Decimeter-Scale, Long-Lived Elevated Ionic Conductivity Regions in Thunderclouds. – NPJ Climate and Atmospheric Sciense, 2019, vol. 2(1), DOI:10.1038/s41612-019-0102-8.
14. Rakov V.A., Uman M.A. Lightning: Physics and Effects. New York: Cambridge University Press, 2003, 687 p.
15. Flannery M.R. Electron-Ion and Ion-Ion Recombination Processes. – Advances in Atomic, Molecular, and Optical Physics, 1994, vol. 32, pp. 117–147.
16. Синькевич А.А., Довгалюк Ю.А. Коронный разряд в облаках. – Известия вузов. Радиофизика, 2013, т. 56, № 11, с. 908–919.
17. Шишкин Н.С. Облака, осадки и грозовое электричество. Л.: Гидрометеоиздат, 1964, 401 с.
18. Shraiman B.I., Siggia E.D. Scalar turbulence. – Nature, 2000, vol. 405, pp. 639–646.
19. Saberi A.A. Recent Advances in Percolation Theory and its Applications. – Physics Reports, 2015, vol. 578, DOI:10.1016/j.physrep. 2015.03.003.
20. Torquato S., Jiao Y. Effect of Dimensionality on the Continuum Percolation of Overlapping Hyperspheres and Hypercubes. ii. Simulation results and analyses. – Journal of Chemical Physics, 2012, vol. 137(7), 074106, DOI:10.1063/1.4742750.
21. Gardiner B., et al. Measurements of Initial Potential Gradient and Particle Charges in a Montana Summer Thunderstorm. – Journal of Geophysical Research, 1985, vol. 90(D4), pp. 6079–6086, DOI:10.1029/JD090iD04p06079.
22. Ziegler C.L., et al. A Model Evaluation of Noninductive Graupel-Ice Charging in the Early Electrification of Mountain Thunderstorm. – Journal of Geophysical Research, 1991, vol. 96(D7), pp. 12833–12855.
23. Ziegler C.L., MacGorman D.R. Observed Lightning Morphology Relative to Modeled Space Charge and Electric Field Distributions in a Tornadic Storm. – Journal of Atmosphere Science, 1994, vol. 51, pp. 833–851, DOI:10.1175/1520-0469(1994)051 <0833:OLMRTM>2.0.CO;2.
24. Dye J.E., et al. Observations within Two Regions of Charge during Initial Thunderstorm Electrification. – Quarterly Journal of the Royal Meteorological Society, 1988, vol. 114(483), pp. 1271–1290, DOI:10.1002/qj.49711448306.
25. Kossyi I.A., et al. Kinetic Scheme of the Non-Equilibrium Discharge in Nitrogen-Oxygen Mixtures. – Plasma Sources Science and Technology, 1992, vol. 1(3), pp. 207–220, DOI:10.1088/0963-0252/1/3/011.
26. Райзер Ю.П. Физика газового разряда. Долгопрудный: Издательский Дом «Интеллект», 2009, 736 с.
27. Филиппов А.В. и др. Ионный состав плазмы влажного воздуха под действием ионизирующего излучения. – Журнал экспериментальной и теоретической физики, 2017, т. 152, № 2, с. 293–314.
28. Chiu C.S. Numerical Study of Cloud Electrification in an Axisymmetric, Timedependent Cloud Model. – Journal of Geophysical Research, 1978, vol. 83(C10), pp. 5025–5049.
29. Bateman M.G., et al. Precipitation Charge and Size Measurements Inside a New Mexico Mountain Thunderstorm. – Journal of Geophysical Research, 1999, vol. 104, pp. 9643–9653.
30. Syssoev A.A., et al. Relay Charge Transport in Thunderclouds and Its Role in Lightning Initiation. – Scientific Reports, 2022, vol. 12(1), 7090, DOI:10.1038/s41598-022-10722-x.
31. Liu N., et al. Formation of Streamer Discharges from an Isolated Ionization Column at Subbreakdown Conditions. – Physical Review Letters, 2012, vol. 109(2), 025002, DOI:10.1103/PhysRevLett.109.025002.
32. Sadighi S., et al. Streamer Formation and Branching from Model Hydrometeors in Subbreakdown Conditions Inside Thunderclouds. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120(9), pp. 3660–3678, DOI:10.1002/2014JD022724
#
1. Iudin D.I., Syssoev A.A., Rakov V.A. Elektrichestvo – in Russ. (Electricity), 2022, No. 11, pp. 13–28.
2. Iudin D.I. Izvestiya vuzov. Radiofizika – in Russ. (News of Universities. Radiophysics), 2017, vol. 60, No. 5, pp. 418–441.
3. Iudin D.I., et al. Noise-Induced Kinetic Transition in Two-Component Environment. – Journal of Computational and Applied Mathematics, 2020, vol. 388 (5), DOI:10.1016/j.cam.2020.113268.
4. Malan D.J. Physics of Lightning. London: The English Universities Press, 1963, 176 p.
5. Macky W.A. Some Investigations on the Deformation and Breaking of Water Drops in Strong Electric Fields. – Proceedings of the Royal Society of London, 1931, series A 133 (822), pp. 565–587, DOI:10.1098/rspa.1931.0168.
6. Isichenko M.B. Percolation, Statistical Topography, and Transport in Random Media. – Reviews of Modern Physics, 1992,
vol. 64(4), pp. 961–1043, DOI:10.1103/RevModPhys.64.961.
7. Klyatskin V.I. Uspekhi fizicheskih nauk – in Russ. (Successes of Physical Sciences), 1994, vol. 164, No. 5, pp. 531–544.
8. Klyatskin V.I. Uspekhi fizicheskih nauk – in Russ. (Successes of Physical Sciences), 2003, vol. 173, No. 7, pp. 689–710.
9. Bershadskiy A.G. Uspekhi fizicheskih nauk – in Russ. (Successes of Physical Sciences), 1990, vol. 160, No. 12, pp. 189–194.
10. Landau L.D., Lifshits Е.М. Teoreticheskaya fizika. Elektrodinamika sploshnyh sred (Theoretical Physics. Electrodynamics of Continuous Media). М.: Nauka, 1982, 621 p.
11. Sartor J.D., Atkinson W.R. Charge Transfer between Raindrops. – Science, 1967, vol. 157(3794), pp. 37–52.
12. Dutton J. A Survey of Electron Swarm Data. – Journal Physical and Chemical Reference Data, 1975, vol. 4(3), pp. 577–856, DOI:10.1063/1.555525.
13. Iudin D.I., et al. Formation of Decimeter-Scale, Long-Lived Elevated Ionic Conductivity Regions in Thunderclouds. – NPJ Climate and Atmospheric Sciense, 2019, vol. 2(1), DOI:10.1038/s41612-019-0102-8.
14. Rakov V.A., Uman M.A. Lightning: Physics and Effects. New York: Cambridge University Press, 2003, 687 p.
15. Flannery M.R. Electron-Ion and Ion-Ion Recombination Processes. – Advances in Atomic, Molecular, and Optical Physics, 1994, vol. 32, pp. 117–147.
16. Sin'kevich A.A., Dovgalyuk Yu.А. Izvestiya vuzov. Radiofizika – in Russ. (News of Universities. Radiophysics), 2013, vol. 56, No. 11, pp. 908–919.
17. Shishkin N.S. Oblaka, osadki i grozovoe elektrichestvo (Clouds, Precipitation and Thunderstorm Electricity). L.: Gidrometeoizdat, 1964, 401 p.
18. Shraiman B.I., Siggia E.D. Scalar turbulence. – Nature, 2000, vol. 405, pp. 639–646.
19. Saberi A.A. Recent Advances in Percolation Theory and its Applications. – Physics Reports, 2015, vol. 578, DOI:10.1016/j.physrep.2015.03.003.
20. Torquato S., Jiao Y. Effect of Dimensionality on the Continuum Percolation of Overlapping Hyperspheres and Hypercubes. ii. Simulation results and analyses. – Journal of Chemical Physics, 2012, vol. 137(7), 074106, DOI:10.1063/1.4742750.
21. Gardiner B., et al. Measurements of Initial Potential Gradient and Particle Charges in a Montana Summer Thunderstorm. – Journal of Geophysical Research, 1985, vol. 90(D4), pp. 6079–6086, DOI:10.1029/JD090iD04p06079.
22. Ziegler C.L., et al. A Model Evaluation of Noninductive Graupel-Ice Charging in the Early Electrification of Mountain Thunderstorm. – Journal of Geophysical Research, 1991, vol. 96(D7), pp. 12833–12855.
23. Ziegler C.L., MacGorman D.R. Observed Lightning Morphology Relative to Modeled Space Charge and Electric Field Distributions in a Tornadic Storm. – Journal of Atmosphere Science, 1994, vol. 51, pp. 833–851, DOI:10.1175/1520-0469(1994)051<0833: OLMRTM>2.0.CO;2.
24. Dye J.E., et al. Observations within Two Regions of Charge during Initial Thunderstorm Electrification. – Quarterly Journal of the Royal Meteorological Society, 1988, vol. 114(483), pp. 1271–1290, DOI:10.1002/qj.49711448306.
25. Kossyi I.A., et al. Kinetic Scheme of the Non-Equilibrium Discharge in Nitrogen-Oxygen Mixtures. – Plasma Sources Science and Technology, 1992, vol. 1(3), pp. 207–220, DOI:10.1088/0963-0252/1/3/011.
26. Rayzer Yu.P. Fizika gazovogo razryada (Physics of the Gas Discharge). Dolgoprudnyy: Izdatel'skiy Dom «Intellekt», 2009, 736 p.
27. Filippov A.V., et al. Zhurnal eksperimental'noy i teoreticheskoy fiziki – in Russ. (Journal of Experimental and Theoretical Physics), 2017, vol. 152, No. 2, pp. 293–314.
28. Chiu C.S. Numerical Study of Cloud Electrification in an Axisymmetric, Timedependent Cloud Model. – Journal of Geophysical Research, 1978, vol. 83(C10), pp. 5025–5049.
29. Bateman M.G., et al. Precipitation Charge and Size Measurements Inside a New Mexico Mountain Thunderstorm. – Journal of Geophysical Research, 1999, vol. 104, pp. 9643–9653.
30. Syssoev A.A., et al. Relay Charge Transport in Thunderclouds and Its Role in Lightning Initiation. – Scientific Reports, 2022, vol. 12(1), 7090, DOI:10.1038/s41598-022-10722-x.
31. Liu N., et al. Formation of Streamer Discharges from an Isolated Ionization Column at Subbreakdown Conditions. – Physical Review Letters, 2012, vol. 109(2), 025002, DOI:10.1103/PhysRevLett.109.025002.
32. Sadighi S., et al. Streamer Formation and Branching from Model Hydrometeors in Subbreakdown Conditions Inside Thunderclouds. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120(9), pp. 3660–3678, DOI:10.1002/2014JD022724
Published
2022-10-27
Section
Article