Lightning Initiation as a Consequence of Natural Thundercloud Evolution. Part 2. Pre-Streamer Stage
Abstract
The article presents the second part of the authors’ lightning initiation scenario, which is a continuation of the study [1]. In the first part it was shown that, if the detachment of electrons from negative ions is taken into account, the air breakdown field reduces by 15–30 %. This partially simplifies but does not solve the problem of lightning initiation in a thundercloud, the maximum electric fields in which are approximately an order of magnitude lower than the dielectric strength of air. This article addresses the lightning discharge inception scenario pre-streamer stage. It describes how a series of corona discharges that occur during collisions (nearly collisions) of hydrometeors seeds the cloud with decimeter-scale regions having increased ionic conductivity. The electric field at the poles of these regions enhances to a level necessary for positive streamers to appear. It is shown that, for a transition from millimeter-scale corona discharges to decimeter- or meter-scale streamers to occur, a spatiotemporal frequency of corona discharges on hydrometeors higher than 0,1 m-3s-1 is required, which may well be achieved in a typical thundercloud. The final stage, at which streamers oriented by the direction of a large-scale electric field are combined into a single plasma network, within which a hot leader channel forms, will be described in the coming part of the study.
References
2. Иудин Д.И. Зарождение молниевого разряда как индуцированный шумом кинетический переход. – Известия вузов. Радиофизика, 2017, т. 60, № 5, c. 418–441.
3. Iudin D.I., et al. Noise-Induced Kinetic Transition in Two-Component Environment. – Journal of Computational and Applied Mathematics, 2020, vol. 388 (5), DOI:10.1016/j.cam.2020.113268.
4. Malan D.J. Physics of Lightning. London: The English Universities Press, 1963, 176 p.
5. Macky W.A. Some Investigations on the Deformation and Breaking of Water Drops in Strong Electric Fields. – Proceedings of the Royal Society of London, 1931, series A 133 (822), pp. 565–587, DOI:10.1098/rspa.1931.0168.
6. Isichenko M.B. Percolation, Statistical Topography, and Transport in Random Media. – Reviews of Modern Physics, 1992, vol. 64(4), pp. 961–1043, DOI:10.1103/RevModPhys.64.961.
7. Кляцкин В.И. Статистическое описание диффузии пассивной примеси в случайном поле скоростей. – Успехи физических наук, 1994, т. 164, № 5, с. 531–544.
8. Кляцкин В.И. Кластеризация и диффузия частиц и плотности пассивной примеси в случайных гидродинамических потоках. – Успехи физических наук, 2003, т. 173, № 7, с. 689–710.
9. Бершадский А.Г. Крупномасштабные фрактальные структуры в лабораторной турбулентности, океане и астрофизике. – Успехи физических наук, 1990, т. 160, № 12, с. 189–194.
10. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Электродинамика сплошных сред. М.: Наука, 1982, 621 с.
11. Sartor J.D., Atkinson W.R. Charge Transfer between Raindrops. – Science, 1967, vol. 157(3794), pp. 37–52.
12. Dutton J. A Survey of Electron Swarm Data. – Journal Physical and Chemical Reference Data, 1975, vol. 4(3), pp. 577–856, DOI: 10.1063/1.555525.
13. Iudin D.I., et al. Formation of Decimeter-Scale, Long-Lived Elevated Ionic Conductivity Regions in Thunderclouds. – NPJ Climate and Atmospheric Sciense, 2019, vol. 2(1), DOI:10.1038/s41612-019-0102-8.
14. Rakov V.A., Uman M.A. Lightning: Physics and Effects. New York: Cambridge University Press, 2003, 687 p.
15. Flannery M.R. Electron-Ion and Ion-Ion Recombination Processes. – Advances in Atomic, Molecular, and Optical Physics, 1994, vol. 32, pp. 117–147.
16. Синькевич А.А., Довгалюк Ю.А. Коронный разряд в облаках. – Известия вузов. Радиофизика, 2013, т. 56, № 11, с. 908–919.
17. Шишкин Н.С. Облака, осадки и грозовое электричество. Л.: Гидрометеоиздат, 1964, 401 с.
18. Shraiman B.I., Siggia E.D. Scalar turbulence. – Nature, 2000, vol. 405, pp. 639–646.
19. Saberi A.A. Recent Advances in Percolation Theory and its Applications. – Physics Reports, 2015, vol. 578, DOI:10.1016/j.physrep. 2015.03.003.
20. Torquato S., Jiao Y. Effect of Dimensionality on the Continuum Percolation of Overlapping Hyperspheres and Hypercubes. ii. Simulation results and analyses. – Journal of Chemical Physics, 2012, vol. 137(7), 074106, DOI:10.1063/1.4742750.
21. Gardiner B., et al. Measurements of Initial Potential Gradient and Particle Charges in a Montana Summer Thunderstorm. – Journal of Geophysical Research, 1985, vol. 90(D4), pp. 6079–6086, DOI:10.1029/JD090iD04p06079.
22. Ziegler C.L., et al. A Model Evaluation of Noninductive Graupel-Ice Charging in the Early Electrification of Mountain Thunderstorm. – Journal of Geophysical Research, 1991, vol. 96(D7), pp. 12833–12855.
23. Ziegler C.L., MacGorman D.R. Observed Lightning Morphology Relative to Modeled Space Charge and Electric Field Distributions in a Tornadic Storm. – Journal of Atmosphere Science, 1994, vol. 51, pp. 833–851, DOI:10.1175/1520-0469(1994)051 <0833:OLMRTM>2.0.CO;2.
24. Dye J.E., et al. Observations within Two Regions of Charge during Initial Thunderstorm Electrification. – Quarterly Journal of the Royal Meteorological Society, 1988, vol. 114(483), pp. 1271–1290, DOI:10.1002/qj.49711448306.
25. Kossyi I.A., et al. Kinetic Scheme of the Non-Equilibrium Discharge in Nitrogen-Oxygen Mixtures. – Plasma Sources Science and Technology, 1992, vol. 1(3), pp. 207–220, DOI:10.1088/0963-0252/1/3/011.
26. Райзер Ю.П. Физика газового разряда. Долгопрудный: Издательский Дом «Интеллект», 2009, 736 с.
27. Филиппов А.В. и др. Ионный состав плазмы влажного воздуха под действием ионизирующего излучения. – Журнал экспериментальной и теоретической физики, 2017, т. 152, № 2, с. 293–314.
28. Chiu C.S. Numerical Study of Cloud Electrification in an Axisymmetric, Timedependent Cloud Model. – Journal of Geophysical Research, 1978, vol. 83(C10), pp. 5025–5049.
29. Bateman M.G., et al. Precipitation Charge and Size Measurements Inside a New Mexico Mountain Thunderstorm. – Journal of Geophysical Research, 1999, vol. 104, pp. 9643–9653.
30. Syssoev A.A., et al. Relay Charge Transport in Thunderclouds and Its Role in Lightning Initiation. – Scientific Reports, 2022, vol. 12(1), 7090, DOI:10.1038/s41598-022-10722-x.
31. Liu N., et al. Formation of Streamer Discharges from an Isolated Ionization Column at Subbreakdown Conditions. – Physical Review Letters, 2012, vol. 109(2), 025002, DOI:10.1103/PhysRevLett.109.025002.
32. Sadighi S., et al. Streamer Formation and Branching from Model Hydrometeors in Subbreakdown Conditions Inside Thunderclouds. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120(9), pp. 3660–3678, DOI:10.1002/2014JD022724
#
1. Iudin D.I., Syssoev A.A., Rakov V.A. Elektrichestvo – in Russ. (Electricity), 2022, No. 11, pp. 13–28.
2. Iudin D.I. Izvestiya vuzov. Radiofizika – in Russ. (News of Universities. Radiophysics), 2017, vol. 60, No. 5, pp. 418–441.
3. Iudin D.I., et al. Noise-Induced Kinetic Transition in Two-Component Environment. – Journal of Computational and Applied Mathematics, 2020, vol. 388 (5), DOI:10.1016/j.cam.2020.113268.
4. Malan D.J. Physics of Lightning. London: The English Universities Press, 1963, 176 p.
5. Macky W.A. Some Investigations on the Deformation and Breaking of Water Drops in Strong Electric Fields. – Proceedings of the Royal Society of London, 1931, series A 133 (822), pp. 565–587, DOI:10.1098/rspa.1931.0168.
6. Isichenko M.B. Percolation, Statistical Topography, and Transport in Random Media. – Reviews of Modern Physics, 1992,
vol. 64(4), pp. 961–1043, DOI:10.1103/RevModPhys.64.961.
7. Klyatskin V.I. Uspekhi fizicheskih nauk – in Russ. (Successes of Physical Sciences), 1994, vol. 164, No. 5, pp. 531–544.
8. Klyatskin V.I. Uspekhi fizicheskih nauk – in Russ. (Successes of Physical Sciences), 2003, vol. 173, No. 7, pp. 689–710.
9. Bershadskiy A.G. Uspekhi fizicheskih nauk – in Russ. (Successes of Physical Sciences), 1990, vol. 160, No. 12, pp. 189–194.
10. Landau L.D., Lifshits Е.М. Teoreticheskaya fizika. Elektrodinamika sploshnyh sred (Theoretical Physics. Electrodynamics of Continuous Media). М.: Nauka, 1982, 621 p.
11. Sartor J.D., Atkinson W.R. Charge Transfer between Raindrops. – Science, 1967, vol. 157(3794), pp. 37–52.
12. Dutton J. A Survey of Electron Swarm Data. – Journal Physical and Chemical Reference Data, 1975, vol. 4(3), pp. 577–856, DOI:10.1063/1.555525.
13. Iudin D.I., et al. Formation of Decimeter-Scale, Long-Lived Elevated Ionic Conductivity Regions in Thunderclouds. – NPJ Climate and Atmospheric Sciense, 2019, vol. 2(1), DOI:10.1038/s41612-019-0102-8.
14. Rakov V.A., Uman M.A. Lightning: Physics and Effects. New York: Cambridge University Press, 2003, 687 p.
15. Flannery M.R. Electron-Ion and Ion-Ion Recombination Processes. – Advances in Atomic, Molecular, and Optical Physics, 1994, vol. 32, pp. 117–147.
16. Sin'kevich A.A., Dovgalyuk Yu.А. Izvestiya vuzov. Radiofizika – in Russ. (News of Universities. Radiophysics), 2013, vol. 56, No. 11, pp. 908–919.
17. Shishkin N.S. Oblaka, osadki i grozovoe elektrichestvo (Clouds, Precipitation and Thunderstorm Electricity). L.: Gidrometeoizdat, 1964, 401 p.
18. Shraiman B.I., Siggia E.D. Scalar turbulence. – Nature, 2000, vol. 405, pp. 639–646.
19. Saberi A.A. Recent Advances in Percolation Theory and its Applications. – Physics Reports, 2015, vol. 578, DOI:10.1016/j.physrep.2015.03.003.
20. Torquato S., Jiao Y. Effect of Dimensionality on the Continuum Percolation of Overlapping Hyperspheres and Hypercubes. ii. Simulation results and analyses. – Journal of Chemical Physics, 2012, vol. 137(7), 074106, DOI:10.1063/1.4742750.
21. Gardiner B., et al. Measurements of Initial Potential Gradient and Particle Charges in a Montana Summer Thunderstorm. – Journal of Geophysical Research, 1985, vol. 90(D4), pp. 6079–6086, DOI:10.1029/JD090iD04p06079.
22. Ziegler C.L., et al. A Model Evaluation of Noninductive Graupel-Ice Charging in the Early Electrification of Mountain Thunderstorm. – Journal of Geophysical Research, 1991, vol. 96(D7), pp. 12833–12855.
23. Ziegler C.L., MacGorman D.R. Observed Lightning Morphology Relative to Modeled Space Charge and Electric Field Distributions in a Tornadic Storm. – Journal of Atmosphere Science, 1994, vol. 51, pp. 833–851, DOI:10.1175/1520-0469(1994)051<0833: OLMRTM>2.0.CO;2.
24. Dye J.E., et al. Observations within Two Regions of Charge during Initial Thunderstorm Electrification. – Quarterly Journal of the Royal Meteorological Society, 1988, vol. 114(483), pp. 1271–1290, DOI:10.1002/qj.49711448306.
25. Kossyi I.A., et al. Kinetic Scheme of the Non-Equilibrium Discharge in Nitrogen-Oxygen Mixtures. – Plasma Sources Science and Technology, 1992, vol. 1(3), pp. 207–220, DOI:10.1088/0963-0252/1/3/011.
26. Rayzer Yu.P. Fizika gazovogo razryada (Physics of the Gas Discharge). Dolgoprudnyy: Izdatel'skiy Dom «Intellekt», 2009, 736 p.
27. Filippov A.V., et al. Zhurnal eksperimental'noy i teoreticheskoy fiziki – in Russ. (Journal of Experimental and Theoretical Physics), 2017, vol. 152, No. 2, pp. 293–314.
28. Chiu C.S. Numerical Study of Cloud Electrification in an Axisymmetric, Timedependent Cloud Model. – Journal of Geophysical Research, 1978, vol. 83(C10), pp. 5025–5049.
29. Bateman M.G., et al. Precipitation Charge and Size Measurements Inside a New Mexico Mountain Thunderstorm. – Journal of Geophysical Research, 1999, vol. 104, pp. 9643–9653.
30. Syssoev A.A., et al. Relay Charge Transport in Thunderclouds and Its Role in Lightning Initiation. – Scientific Reports, 2022, vol. 12(1), 7090, DOI:10.1038/s41598-022-10722-x.
31. Liu N., et al. Formation of Streamer Discharges from an Isolated Ionization Column at Subbreakdown Conditions. – Physical Review Letters, 2012, vol. 109(2), 025002, DOI:10.1103/PhysRevLett.109.025002.
32. Sadighi S., et al. Streamer Formation and Branching from Model Hydrometeors in Subbreakdown Conditions Inside Thunderclouds. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120(9), pp. 3660–3678, DOI:10.1002/2014JD022724