Development of a Superconducting Wire for the Central Solenoid of a Tokamak with Reactor Technologies (TRT)

  • Viktor E. SYTNIKOV
  • Sergey A. LELEKHOV
  • Vasiliy V. ZUBKO
Keywords: central solenoid, conductor design, operating current, HTS-2 tapes

Abstract

The article presents the results of the preliminary development of a superconducting wire based on the VS type design and parallel tape packages for the central solenoid of a compact tokamak with reactor technologies (TRT). One of the main problems that must be solved for successfully implementing such projects is to develop high-current high-temperature superconducting (HTS) conductors for toroidal excitation coils and central solenoid sections. The magnetic system compactness entails the need to develop a conductor with a high engineering current density up to 90 A/mm2. The operating current in the windings should be at a level of 60 kA at 15 K in a magnetic field of 15 T. The wire in the central solenoid experiences significant mechanical loads caused by Lorentz forces. In addition, in view of a significant energy stored in the magnet, there is a need to have elements in the conductor able to perform emergency evacuation of energy with an acceptable voltage across the winding and its heating that will not entail damage to its elements. The conductor structure should have enough space to accommodate stabilizing and strengthening materials, as well as cooling channels. Two design versions of the VS type conductor based on radially arranged second-generation HTS tapes and based on parallel packages are considered. The design characteristics of the proposed conductors are analyzed for various operating modes of the tokamak electromagnetic system. The results of FEM-based calculations of the magnetic field distribution in a conductor, its current carrying capacity and energy loss estimation in a varying magnetic field are presented.

Author Biographies

Viktor E. SYTNIKOV

(JSC "STC FGC UES", Moscow, Russia) – Deputy Scientific Director, Dr. Sci. (Eng.).

Sergey A. LELEKHOV

(Private institution "ITER – Center", Moscow, Russia) – Leading Researcher, Cand. Sci. (Phys.-Math.).

Vasiliy V. ZUBKO

(JSC "VNIIKP"; JSC "STC FGC UES", Moscow, Russia) – Chief Researcher; Chief Specialist, Dr. Sci. (Eng.).

References

1. Menard J.E. Compact Steady-State Tokamak Performance Dependence on Magnet and Core Physics Limits. – Philosophical Transactions of the Royal Society, 2019, A 377: 20170440, DOI:10.1098/rsta.2017.0440.

2. Creely A.J. et al. Overview of the SPARC Tokamak. – Journal of Plasma Physics, 2020, vol. 86, 865860502, DOI:10.1017/S0022377820001257.

3. Красильников А.В. и др. Токамак с реакторными технологиями (TRT): концепция, миссии, основные особенности и ожидаемые характеристики. – Физика плазмы, 2021, т. 47, № 11, с. 970–985.

4. Бондарчук Э.Н. и др. Инженерно-технические аспекты электромагнитной системы установки TRT. – Физика плазмы, 2021, т. 47, № 12, с. 1070–1086.

5. Molodyk A. et al. Development and Large Volume Production of Extremely High Current Density YBa2Cu3O7 Superconducting Wires for Fusion. – Scientific Reports, 2021, vol. 11(1), DOI:10.1038/s41598-021-81559-z.

6. ВТСП-провод второго поколения [Электрон. ресурс], URL: www.s-innovations.ru (дата обращения 10.10.2022).

7. Sytnikov V.E. et al. Advanced Variants of HTSC Wires for ТRТ Electromagnetic System. – Plasma Physics Reports, 2021, vol. 47(12), pp. 1204–1219, DOI:10.1134/S1063780X21110246.

8. Kim M. et al. Filamentization of YBCO Coated Conductors by Microcontact Printing. – IEEE Transactions on Applied Superconductivity, 2013, vol. 23, No. 3, 6601304, DOI:10.1109/TASC.2012.2236811.

9. Bruzzone P. et al. High Temperature Superconductors for Fusion Magnets. – Nuclear Fusion, 2018, vol. 58, No. 10, DOI:10.1088/1741-4326/aad835.

10. Ten Kate H. Super-Conductors for Successful Magnets. – IEEE/CSC & ESAS Superconductivity News Forum, 2019, Plenary Presentation at MT26, Vancouver, Canada.

11. Terazaki Y. et al. Measurement and Analysis of Critical Current of 100-kA Class Simply-Stacked HTS Conductors. – IEEE Transactions on Applied Superconductivity, 2015, vol. 25, No. 3, 4602905.

12. Celentano G. et al. Design of an Industrially Feasible Twisted-Stack HTS Cable-in-Conduit Conductor for Fusion Application. – IEEE Transactions on Applied Superconductivity, 2013, vol. 24(3), DOI:10.1109/TASC.2013.2287910.

13. Wolf M.J. et al. HTS CroCo a Stacked HTS Conductor Optimized for High Currents and Long Length Production. – IEEE Transactions on Applied Superconductivity, 2016, vol. 26, No. 2, DOI:10.1109/TASC.2016.2521323.

14. Takayasu M. et al. HTS Twisted Stacked-Tape Cable Conductor. – Superconductor Science and Technology, 2012, vol. 25(1), DOI:10.1088/0953-2048/25/1/014011.

15. Uglietti D. Test of 60 kA Coated Conductor Cable Prototypes for Fusion Magnets. – Superconductor Science and Technology, 2015, vol. 28(12), DOI:10.1088/0953-2048/28/12/124005.

16. Hartwig Z. et al. VIPER: an Industrially Scalable High-Current High-Temperature Superconductor Cable. – Superconductor Science and Technology, 2020, 33(11), 11LT01, DOI:10.1088/1361-6668/abb8c0.

17. Van der Laan D.C., Weiss J.D., McRae D.M. Status of CORC Cables and Wires for Use in High-field Magnets and Power Systems a Decade after Their Introduction. – Superconductor Science and Technology, 2019, vol. 32(3), 033001, DOI:10.1088/1361-6668/aafc82.

18. Weiss J. et al. Introduction of CORC® Wires: Highly flexible, Round High-Temperature Superconducting Wires for Magnet and Power Transmission Applications. – Superconductor Science and Technology, 2017, vol. 30(1), DOI:10.1088/0953-2048/30/1/014002.

19. Mulder T. et al. Recent Progress in the Development of CORC Cable-In-Conduit Conductors. – IEEE Transactions on Applied Superconductivity, 2020, vol. 30, No. 4, DOI:10.1109/TASC.2020.2968251.

20. Sytnikov V.E. et al. Influence of the Multilayer HTC-Cable Conductor Design on the Current Distribution. – Physica C: Superconductivity and Its Applications, 1998, 310, pp. 387–391, DOI: 10.1016/S0921-4534(98)00497-3.

21. Fetisov S.S. et al. Compact 2G HTS Power Cable: New Cold Tests Results. – Journal of Physics: Conference Series, 2020, vol. 1559, No.1, p. 012081, DOI:10.1088/1742-6596/1559/1/012081.

22. Goldacker W. et al. High Current DyBCO-ROEBEL Assembled Coated Conductor (RACC). – Journal of Physics: Conference Series, 2006, 43(1), DOI:10.1088/1742-6596/43/1/220.

23. Long N.J. et al. Development of YBCO Roebel Cables for High Current Transport and Low AC Loss Applications. – Journal of Physics: Conference Series, 2010, vol. 234(2), DOI:10.1088/1742-6596/234/2/022021.

24. Сытников В.Е., Лелехов С.А. Новая конструкция сверхпроводящего провода типа cable-in-conduit для крупных магнитов. – Вопросы атомной науки и техники. Серия: Термоядерный синтез, 2020, т. 43, вып. 3, с. 31–40.

25. Sytnikov V.E., Lelekhov S.A. New HTS Conductor Design for Large Scale Applications. – IEEE Transactions on Applied Superconductivity, 2021, vol.31, No 5, DOI:10.1109/TASC.2021.3063070.

26. TCS Machinery & Service SRL [Электрон. ресурс], URL: www.tcsmachinery.com (дата обращения 10.10.2022).

27. Mawatari Y. Alternating Current Loss in Radially Arranged Superconducting Strips. – Applied Physics Letters, 2006, vol. 88, 092503, DOI: 10.1063/1.2180875.

28. Zubko V., Zanegin S., Fetisov S. Models for optimization and AC Losses Analysis in a 2G HTS Cable. – Journal of Physics: Conference Series, 2021, vol. 2043, No 1, DOI:10.1088/1742-6596/2043/1/012004.

29. Zanegin S.Yu. et al. Experimental and Numerical Study of AC Losses in HTS Coils of AC Electric Machines. – Russian Electrical Engineering, 2022, vol. 93, No 6, p. 424–429, DOI:10.3103/S1068371222060104.

30. Brandt E. Superconductors of Finite Thickness in a Perpendicular Magnetic Field: Strips and Slabs. – Physical Review B, 1996, vol. 54, pp. 4246-4264, DOI: 10.1103/PhysRevB.54.4246.

31. Norris W. Calculation of Hysteresis Losses in Hard Superconductors Carrying AC: Isolated Conductors and Edges of Thin Sheets. – Journal of Physics D: Applied Physics, 2002, vol. 3(4), DOI:10.1088/0022-3727/3/4/308.

32. Lelekhov S.A., Sytnikov V.E. Conductor Design for Toroidal Field Coils of a High Magnetic Field Tokamak TRT. – IEEE Transactions on Applied Superconductivity, 2022, vol. 32, No. 6, 4201805.

33. Lelekhov S. The Usage Experience of High Current Conductor with Parallel SC Wires for Magnets. –ASC14, ID 1951493, 3LPo2J-01, Charlotte, 2014, p. 181.

34. Lelekhov S.A. Analysis of a Possibility to Use Parallel Non-Twis-ted Stacks of HTS Tapes as Cable in High Current Conductor of Tokamak Toroidal Field Coils. – IEEE Transactions on Applied Supercon-ductivity, 2021, vol.31, No 5, DOI:10.1109/TASC.2021.3069322.

35. Uglietti D. et al. Non-Twisted Stacks of Coated Conductors for Magnets: Analysis of Inductance and AC Losses. – Cryogenics, 2020, vol. 110, DOI:10.1016/j.cryogenics.2020.103118.

#

1. Menard J.E. Compact Steady-State Tokamak Performance Dependence on Magnet and Core Physics Limits. – Philosophical Transactions of the Royal Society, 2019, A 377: 20170440, DOI:10.1098/rsta.2017.0440.

2. Creely A.J. et al. Overview of the SPARC Tokamak. – Journal of Plasma Physics, 2020, vol. 86, 865860502, DOI:10.1017/S0022377820001257.

3. Krasil'nikov A.V. et al. Fizika plazmy – in Russ. (Plasma Physics), 2021, vol. 47, No. 11, pp. 970–985.

4. Bondarchuk E.N. et al. Fizika plazmy – in Russ. (Plasma Physics), 2021, vol. 47, No. 12, pp. 1070–1086.

5. Molodyk A. et al. Development and Large Volume Production of Extremely High Current Density YBa2Cu3O7 Superconducting Wires for Fusion. – Scientific Reports, 2021, vol. 11(1), DOI:10.1038/s41598-021-81559-z.

6. VTSP-provod vtorogo pokoleniya (HTSP-Second Generation Wire) [Electron. resource], URL: www.s-innovations.ru (Date of appeal 10.10.2022).

7. Sytnikov V.E. et al. Advanced Variants of HTSC Wires for ТRТ Electromagnetic System. – Plasma Physics Reports, 2021, vol. 47(12), pp. 1204–1219, DOI:10.1134/S1063780X21110246.

8. Kim M. et al. Filamentization of YBCO Coated Conductors by Microcontact Printing. – IEEE Transactions on Applied Superconductivity, 2013, vol. 23, No. 3, 6601304, DOI:10.1109/TASC.2012.2236811.

9. Bruzzone P. et al. High Temperature Superconductors for Fusion Magnets. – Nuclear Fusion, 2018, vol. 58, No. 10, DOI:10.1088/1741-4326/aad835.

10. Ten Kate H. Super-Conductors for Successful Magnets. – IEEE/CSC & ESAS Superconductivity News Forum, 2019, Plenary Presentation at MT26, Vancouver, Canada.

11. Terazaki Y. et al. Measurement and Analysis of Critical Current of 100-kA Class Simply-Stacked HTS Conductors. – IEEE Transactions on Applied Superconductivity, 2015, vol. 25, No. 3, 4602905.

12. Celentano G. et al. Design of an Industrially Feasible Twisted-Stack HTS Cable-in-Conduit Conductor for Fusion Application. – IEEE Transactions on Applied Superconductivity, 2013, vol. 24(3), DOI:10.1109/TASC.2013.2287910.

13. Wolf M.J. et al. HTS CroCo a Stacked HTS Conductor Optimized for High Currents and Long Length Production. – IEEE Transactions on Applied Superconductivity, 2016, vol. 26, No. 2, DOI:10.1109/TASC.2016.2521323.

14. Takayasu M. et al. HTS Twisted Stacked-Tape Cable Conductor. – Superconductor Science and Technology, 2012, vol. 25(1), DOI:10.1088/0953-2048/25/1/014011.

15. Uglietti D. Test of 60 kA Coated Conductor Cable Prototypes for Fusion Magnets. – Superconductor Science and Technology, 2015, vol. 28(12), DOI:10.1088/0953-2048/28/12/124005.

16. Hartwig Z. et al. VIPER: an Industrially Scalable High-Current High-Temperature Superconductor Cable. – Superconductor Science and Technology, 2020, 33(11), 11LT01, DOI:10.1088/1361-6668/abb8c0.

17. Van der Laan D.C., Weiss J.D., McRae D.M. Status of CORC Cables and Wires for Use in High-field Magnets and Power Systems a Decade after Their Introduction. – Superconductor Science and Technology, 2019, vol. 32(3), 033001, DOI:10.1088/1361-6668/aafc82.

18. Weiss J. et al. Introduction of CORC® Wires: Highly flexible, Round High-Temperature Superconducting Wires for Magnet and Power Transmission Applications. – Superconductor Science and Technology, 2017, vol. 30(1), DOI:10.1088/0953-2048/30/1/014002.

19. Mulder T. et al. Recent Progress in the Development of CORC Cable-In-Conduit Conductors. – IEEE Transactions on Applied Superconductivity, 2020, vol. 30, No. 4, DOI:10.1109/TASC.2020.2968251.

20. Sytnikov V.E. et al. Influence of the Multilayer HTC-Cable Conductor Design on the Current Distribution. – Physica C: Superconductivity and Its Applications, 1998, 310, pp. 387–391, DOI: 10.1016/S0921-4534(98)00497-3.

21. Fetisov S.S. et al. Compact 2G HTS Power Cable: New Cold Tests Results. – Journal of Physics: Conference Series, 2020, vol. 1559, No.1, p. 012081, DOI:10.1088/1742-6596/1559/1/012081.

22. Goldacker W. et al. High Current DyBCO-ROEBEL Assembled Coated Conductor (RACC). – Journal of Physics: Conference Series, 2006, 43(1), DOI:10.1088/1742-6596/43/1/220.

23. Long N.J. et al. Development of YBCO Roebel Cables for High Current Transport and Low AC Loss Applications. – Journal of Physics: Conference Series, 2010, vol. 234(2), DOI:10.1088/1742-6596/234/2/022021.

24. Sytnikov V.E., Lelekhov S.А. Voprosy atomnoy nauki i tekhniki. Seriya: Termoyadernyy sintez – in Russ. (Issues of Atomic Science and Technology. Series: Thermonuclear Fusion), 2020, vol. 43, iss. 3, pp. 31–40.

25. Sytnikov V.E., Lelekhov S.A. New HTS Conductor Design for Large Scale Applications. – IEEE Transactions on Applied Superconductivity, 2021, vol.31, No 5, DOI:10.1109/TASC.2021.3063070.

26. TCS Machinery & Service SRL [Electron. resource], URL: www.tcsmachinery.com (Date of appeal 10.10.2022).

27. Mawatari Y. Alternating Current Loss in Radially Arranged Superconducting Strips. – Applied Physics Letters, 2006, vol. 88, 092503, DOI: 10.1063/1.2180875.

28. Zubko V., Zanegin S., Fetisov S. Models for optimization and AC Losses Analysis in a 2G HTS Cable. – Journal of Physics: Conference Series, 2021, vol. 2043, No 1, DOI:10.1088/1742-6596/2043/1/ 012004.

29. Zanegin S.Yu. et al. Experimental and Numerical Study of AC Losses in HTS Coils of AC Electric Machines. – Russian Electrical Engineering, 2022, vol. 93, No 6, p. 424–429, DOI:10.3103/S1068371222060104.

30. Brandt E. Superconductors of Finite Thickness in a Perpendicular Magnetic Field: Strips and Slabs. – Physical Review B, 1996, vol. 54, pp. 4246-4264, DOI: 10.1103/PhysRevB.54.4246.

31. Norris W. Calculation of Hysteresis Losses in Hard Superconductors Carrying AC: Isolated Conductors and Edges of Thin Sheets. – Journal of Physics D: Applied Physics, 2002, vol. 3(4), DOI:10.1088/0022-3727/3/4/308.

32. Lelekhov S.A., Sytnikov V.E. Conductor Design for Toroidal Field Coils of a High Magnetic Field Tokamak TRT. – IEEE Transactions on Applied Superconductivity, 2022, vol. 32, No. 6, 4201805.

33. Lelekhov S. The Usage Experience of High Current Conductor with Parallel SC Wires for Magnets. –ASC14, ID 1951493, 3LPo2J-01, Charlotte, 2014, p. 181.

34. Lelekhov S.A. Analysis of a Possibility to Use Parallel Non-Twisted Stacks of HTS Tapes as Cable in High Current Conductor of Tokamak Toroidal Field Coils. – IEEE Transactions on Applied Superconductivity, 2021, vol.31, No 5, DOI:10.1109/TASC.2021.3069322.

35. Uglietti D. et al. Non-Twisted Stacks of Coated Conductors for Magnets: Analysis of Inductance and AC Losses. – Cryogenics, 2020, vol. 110, DOI:10.1016/j.cryogenics.2020.103118

Published
2022-11-17
Section
Article