Development of the Generator for a Small Capacity Bulb Hydropower Unit
Abstract
The generator design development matters for a small bulb hydropower unit is discussed. Synchronous units with a brushless exciter and a brush contact system, with excitation from permanent magnets, as well as an inductor generator were considered as design options. Electromagnetic, ventilation, and thermal analyses are performed, and the dynamics and strength of the main components of a synchronous generator with a brushless exciter are evaluated. The main technical problems have been solved: reducing the generator mass and dimension parameters, reducing its material intensity, decreasing the production cost, increasing the efficiency, and increasing installation readiness and maintainability, reducing windage losses, working out the ventilation system, and enhancement of operational autonomy. It is shown that the generator quantitative and qualitative characteristics can be improved significantly by applying the concept of a synchronous salient pole electrical machine. The possibility of stable generator operation in various modes of its use is shown.
References
2. Schlemmer E. et al. HYDROMATRIX® and StrafloMatrix, Electric Energy from Low Head Hydro Potential. – 2007 International Conference on Clean Electrical Power, 2007, pp. 329–334, DOI: 10.1109/ICCEP.2007.384232.
3. Cui X., Binder A., Schlemmer E. Straight-Flow Permanent Magnet Synchronous Generator Design for Small Hydro Power Plants. – 2007 International Conference on Clean Electrical Power, 2007, pp. 323–328, DOI: 10.1109/ICCEP.2007.384231.
4. Морозов А.А. Турбинное оборудование гидроэлектростанций. М.-Л.: Госэнергоиздат, 1958, 519 с.
5. Boguslawsky I., Korovkin N., Hayakawa M. Large A.C. Machines: Theory and Investigation Methods of Currents and Losses in Stator and Rotor Meshes Including Operation with Nonlinear Loads. Tokyo: Springer, 2017, 550 p.
6. Домбровский В.В., Иванов Н.П. Проектирование гидрогенераторов: т. 2. Л.: Энергия, 1967, 360 с.
7. Сегозерская МГЭС [Электрон. ресурс], URL: http://ntcvie.ru/index.php/ru/ob-ekty/item/25-segozerskaya-mges (дата обращения: 19.07.2022).
8. Костенко М.П., Пиотровский Л.М. Электрические машины. Ч. 2. Л.: Энергия, 1973, 648 с.
9. Домбровский В.В., Хуторецкий Г.М. Основы проектирования электрических машин переменного тока. Л.: Энергия, 1974, 504 с.
10. Кулаковский В.Б. Работа изоляции в генераторах: Возникновение и методы выявления дефектов. М.: Энергоиздат, 1981, 256 с.
11. IEC 60076-7:2018. Ed. 2.0: Power Transformers – Part 7: Loading Guide for Mineral-Oil-Immersed Power Transformers, 2018, 89 p.
12. Коровкин Н.В., Марков М.А. Оптимизация параметров турбогенератора ТВВ-360 по векторному критерию качества. – Известия РАН. Энергетика, 2020, № 4, с. 49–54.
13. Markov M.A., Korovkin N.V. Multi-Objective Optimization of the Operational Characteristics for Turbogenerator TVV-360. – Proceedings of the 2022 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 2022, pp. 1230–1233.
#
1. GOST R 55260.2.1-2012. Gidroelektrostantsii. CH. 2-1. Gidrogeneratory. Tekhnicheskie trebovaniya k postavke (Hydro Power Plants. Part 2-1. Hydrotreaters. Procurement Specifications). M.: Standartinform, 2015, 43 p.
2. Schlemmer E. et al. HYDROMATRIX® and StrafloMatrix, Electric Energy from Low Head Hydro Potential. – 2007 International Conference on Clean Electrical Power, 2007, pp. 329–334, DOI: 10.1109/ICCEP.2007.384232.
3. Cui X., Binder A., Schlemmer E. Straight-Flow Permanent Magnet Synchronous Generator Design for Small Hydro Power Plants. – 2007 International Conference on Clean Electrical Power, 2007, pp. 323–328, DOI: 10.1109/ICCEP.2007.384231.
4. Morozov A.A. Turbinnoe oborudovanie gidroelektrostantsiy (Turbine Equipment for Hydroelectric Power Plants). М.-L.: Gosenergoizdat, 1958, 519 p.
5. Boguslawsky I., Korovkin N., Hayakawa M. Large A.C. Machines: Theory and Investigation Methods of Currents and Losses in Stator and Rotor Meshes Including Operation with Nonlinear Loads. Tokyo: Springer, 2017, 550 p.
6. Dombrovskiy V.V., Ivanov N.P. Proektirovanie gidrogenerato-rov (Design of Hydrogenators): vol. 2. L.: Energiya, 1967, 360 p.
7. Segozerskaya MGES (Segozerskaya SHPP) [Electron. resour-ce], URL: http://ntcvie.ru/index.php/ru/ob-ekty/item/25-segozerskaya-mges (Date of appeal 19/07/2022).
8. Kostenko M.P., Piotrovskiy L.M. Elektricheskie mashiny. Ch. 2 (Electric Machines. Part 2). L.: Energiya, 1973, 648 p.
9. Dombrovskiy V.V., Hutoretskiy G.M. Osnovy proektirovaniya elektricheskih mashin peremennogo toka (Basics of Designing AC Electric Machines). L.: Energiya, 1974, 504 p.
10. Kulakovskiy V.B. Rabota izolyatsii v generatorah: Voznik-novenie i metody vyyavleniya defektov (Work of Insulation in Generators: Occurrence and Methods for Detecting Defects). M.: Energoizdat, 1981, 256 p.
11. IEC 60076-7:2018. Ed. 2.0: Power Transformers – Part 7: Loading Guide for Mineral-Oil-Immersed Power Transformers, 2018, 89 p.
12. Korovkin N.V., Markov M.A. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Power Engineering), 2020, No. 4, pp. 49–54.
13. Markov M.A., Korovkin N.V. Multi-Objective Optimization of the Operational Characteristics for Turbogenerator TVV-360. – Proceedings of the 2022 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 2022, pp. 1230–1233.