Back Flashover Probability of the Overhead Power Line Insulation Taking into Account the Soil Ionization and Frequency Response Features

  • Sergey L. SHISHIGIN
  • Dmitriy S. SHISHIGIN
  • Ivan N. SMIRNOV
Keywords: overhead power line, lightning, back flashover, dangerous currents curve, high-resistance soil, soil ionization, soil frequency response, overhead ground wire under power line wires, grounding counterpoise

Abstract

Back flashovers caused by a lightning strike on an overhead power line tower or overhead ground wire give rise to voltage surges dangerous for the insulation of power substation electrical equipment. A pulse back flashover turns into a short-circuit arc leading to the power line tripping. Calculations of voltage surges in a single–circuit 110 kV power line are carried out using the methods of the grounding devices theory, and the back flashover probability is estimated based on the curve of dangerous currents. The insulation back flashover probability for a power line tower with a ground wire in areas with high-resistance soil is determined by the grounding conductor surge impedance. It is shown that the analysis carried out with taking into account the soil ionization and frequency response features yields an essentially lower back flashover probability. The second ground wire placed under the power line wires reduces the inductance of the ground wires, thereby intensifying the spread of current through the grounding conductors of neighboring towers. This leads to a decreased tower voltage and an increased voltage induced on the wires, thus resulting in a decreased voltage across the insulation voltage and, hence, lower back flashover probability. The factors governing a positive effect from using grounding counterpoises of an overhead power line in areas with high-resistance soil are shown, and the conditions under which this effect is achieved are determined.

Author Biographies

Sergey L. SHISHIGIN

(Vologda State University, Vologda, Russia) – Professor of the Control and Computing Systems Dept., Doctor. Sci. (Eng.), Docent.

Dmitriy S. SHISHIGIN

(Vologda State University, Vologda, Russia) – Docent of the Control and Computing Systems Dept., Cand. Sci. (Eng.).

Ivan N. SMIRNOV

(Vologda State University, Vologda, Russia) – Postgraduate Student of the Control and Computing Systems Dept.

References

1. Богач И.И., Лопатин В.В. Грозоупорность линий электропередачи высокого напряжения. Проблемы и пути решения в АО "Тюменьэнерго". – Энергетик, 2019, № 4, с. 17–21.
2. РД 153-34.3-35.125-99. Руководство по защите электрических сетей 6-1150 кВ от грозовых и внутренних перенапряжений. СПб.: Изд. ПЭИПК, 1999, 227 с.
3. Корсунцев А.В., Покровская К.И. Методика расчета сопротивлений заземления железобетонных фундаментов. – Электрические станции, 1968, № 11, с.63–68.
4. Правила устройства электроустановок. М.: Проспект, 2022, 832 с.
5. Рябкова Е.Я. Заземления в установках высокого напряжения. М.: Энергия, 1978, 224 с.
6. Гайворонский А.С., Мазикин Н.В. Анализ грозоупорности ВЛ 35 кВ, эксплуатируемых с грозозащитными тросами. – V Российская конференция по молниезащите: сборник докладов. СПб.: Изд-во Политехн. ун-та, 2016, с. 92–98.
7. Техника высоких напряжений / Под ред. Д.В. Разевига. М.: Энергия, 1976, 488 с.
8. Базуткин В.В. и др. Перенапряжения в электрических системах и защита от них. СПб.: Энергоиздат, 1995, 320 с.
9. Куклин Д.В., Ефимов Б.В. Расчет кривых опасных параметров при высоких сопротивлениях заземлений опор линий электропередачи. – Электричество, 2016, № 6, с. 16–21.
10. Alipio R., Visacro S. Modeling the Frequency Dependence of Electrical Parameters of Soil. – IEEE Transactions on Electromagnetic Compatibility, 2014, vol. 56, No. 5, pp. 1163–1171, DOI:10.1109/TEMC.2014.2313977.
11. CIGRE Brochure 781. Impact of Soil-Parameter Frequency Dependence on the Response of Grounding Electrodes and on the Lightning Performance of Electrical Systems. WG C4.33, Oct. 2019.
12. Шишигин С.Л, Черепанов А.В., Шишигин Д.С. Моделирование заземлителя в грунте с частотно-зависимой удельной проводимостью. – Научно-технические ведомости СПбПУ. Естественные и инженерные науки, 2018, т. 24, № 3, с. 91–101.
13. Шишигин С.Л., Шишигин Д.С., Смирнов И.Н. Расчет заземлителей с учетом ионизации и частотных свойств грунта. – Известия РАН. Энергетика, 2022, № 6, с. 46–63.
14. Шишигин С.Л., Шишигин Д.С. Расчет заземлителей. Вологда: ВоГУ, 2020, 219 с.
15. Шишигин С.Л., Шишигин Д.С., Смирнов И.Н. Расчет грозовых перенапряжений воздушных линий с импульсной короной в цепных схемах. – Известия РАН. Энергетика, 2022, № 1, с. 47–56.
16. Rakov V.A. et al. Lightning Parameters for Engineering Applications. CIGRE Technical Brochure 549. 2013, 117 p.
17. Аркадьев В.К. Вычисление электрического сопротивления и магнитной проницаемости металлических проводов и тросов в переменном поле. – Вестник электротехники, 1930, № 5, с. 77–79.
#
1. Bogach I.I., Lopatin V.V. Energetik – in Russ. (Power Engineer), 2019, No. 4, pp. 17–21.
2. RD 153-34.3-35.125-99. Rukovodstvo po zashchite elektricheskih setey 6-1150 kV ot grozovyh i vnutrennih perenapryazheniy (Guidelines for the Protection of Electrical Networks 6-1150 kV from Lightning and Internal Overvoltages). SPb.: Izd. PEIPK, 1999, 227 p.
3. Korsuntsev A.V., Pokrovskaya K.I. Elektricheskiye stantsii – in Russ. (Power Plants), 1968, No. 11, pp. 63–68.
4. Pravila ustroystva elektroustanovok (Electrical Installation Rules). М.: Prospekt, 2022, 832 p.
5. Ryabkova E.Ya. Zazemleniya v ustanovkah vysokogo napryazheniya (Grounding in High Voltage Installations). М.: Energiya, 1978, 224 p.
6. Gayvoronskiy A.S., Mazikin N.V. V Rossiyskaya konferentsiya po molniezashchite: sbornik dokladov – in Russ. (V Russian Lightning Protection Conference: Collection of Reports). СПб.: Изд-во Политехн. ун-та, 2016, pp. 92–98.
7. Tekhnika vysokih napryazheniy (High Voltage Technology) / Ed. by D.V. Razevig. М.: Energiya, 1976, 488 p.
8. Bazutkin V.V. et al. Perenapryazheniya v elektricheskih sistemah i zashchita ot nih (Overvoltage in electrical systems and protection against them). SPb.: Energoizdat, 1995, 320 p.
9. Kuklin D.V., Efimov B.V. Elektrichestvo – in Russ. (Electricity), 2016, No. 6, pp. 16–21.
10. Alipio R., Visacro S. Modeling the Frequency Dependence of Electrical Parameters of Soil. – IEEE Transactions on Electromagnetic Compatibility, 2014, vol. 56, No. 5, pp. 1163–1171, DOI:10.1109/TEMC.2014.2313977.
11. CIGRE Brochure 781. Impact of Soil-Parameter Frequency Dependence on the Response of Grounding Electrodes and on the Lightning Performance of Electrical Systems. WG C4.33, Oct. 2019.
12. Shishigin S.L, Cherepanov A.V., Shishigin D.S. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki – in Russ. (Scientific and Technical Bulletin of SpBGPU. Natural and Engineering Sciences), 2018, vol. 24, No. 3, pp. 91–101.
13. Shishigin S.L, Shishigin D.S., Smirnov I.N. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Power Engineering), 2022, No. 6, pp. 46–63.
14. Shishigin S.L, Shishigin D.S. Raschet zazemliteley (Calcu-lation of Earthing Devices). Vologda: VoGU, 2020, 219 p.
15. Shishigin S.L., Shishigin D.S., Smirnov I.N. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Power Engineering), 2022, No. 1, pp. 47–56.
16. Rakov V.A. et al. Lightning Parameters for Engineering Applications. CIGRE Technical Brochure 549. 2013, 117 p.
17. Arkad'ev V.K. Vestnik elektrotekhniki – in Russ. (Bulletin of Electrical Engineering), 1930, No. 5, pp. 77–79.
Published
2022-12-19
Section
Article