The Dynamic Model of a Linear Electromagnetic Motor for a Laboratory Shaker

  • Pavel A. DERGACHEV
  • Anton O. SIDOROV
  • Mikhail S. VENTSEREV
  • Alexandr S. IVANOV
Keywords: linear inductor motor, pulling force, dynamic characteristics, finite element method

Abstract

For setting up linear movement (translational or reciprocating) with a specified frequency, rack, screw or more complex gears are most often used. The presence of an additional kinematic link results in increased losses, degraded reliability, increased noise, and pooper weight and dimension indicators. An alternative option is to use a linear electromechanical converter. The article presents the results of numerical simulation of a linear electromagnetic motor (also known as a linear inductor motor) based on the finite element method. An linear inductor motor is designed to drive a laboratory shaker applied in medicine. A mathematical model of the physical processes of linear inductor motor operation is presented. A term for considering the viscous friction force is introduced into the equation of motion, which makes it possible to improve the accuracy of the calculations. Three-dimensional models of an linear inductor motor are considered: a single-sided one (for the action of a one-sided electromagnetic force and a two-sided one (for the case of alternately acting oppositely directed electromagnetic forces). Various design options are analyzed, and the most suitable one is proposed based on the analysis results. Temporal dynamic characteristics of the linear inductor motor model for the case of operation in the regions of resonant and off-resonant frequencies are obtained, their analysis is performed, and recommendations for further improvement of the design are given. The possibility of using the considered motor for driving a laboratory shaker is qualitatively assessed.

Author Biographies

Pavel A. DERGACHEV

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Docent of the Electromechanics, Electrical and Electronic Apparatus Dept., Cand. Sci. (Eng.), Docent.

Anton O. SIDOROV

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Senior Lecturer of the Electromechanics, Electrical and Electronic Apparatus Dept., Cand. Sci. (Eng.).

Mikhail S. VENTSEREV

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Master's Student of the Electromechanics, Electrical and Electronic Apparatus Dept.

Alexandr S. IVANOV

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Docent of the Electromechanics, Electrical and Electronic Apparatus Dept., Cand. Sci. (Eng.), Docent.

References

1. Артоболевский И.И. Теория механизмов и машин. М.: Наука, 1988, 640 с.
2. Медведев В.Т. и др. Вибрации и шум электрических машин, трансформаторов и реакторов. М.: Изд-во МЭИ, 2018, 426 с.
3. Штурман Г.И., Аронов Р.Л. «Краевой эффект» в индукционных машинах с разомкнутым магнитопроводом. – Электричество, 1947, № 2, с. 54–29.
4. Мошкин В.И., Нейман В.Ю., Угаров Г.Г. Импульсные линейные электромагнитные двигатели. Курган: Изд-во Курганского гос. ун-та, 2010, 220 с.
5. Akita S. et al. Design Analysis of a Line-Start Permanent Magnet Linear Synchronous Motor. – 11th International Symposium on Linear Drives for Industry Applications, 2017, DOI:10.23919/LDIA.2017.8097257.
6. Тодарев В.В., Логвин В.В., Грачев С.А. Линейный асинхронный электродвигатель многовекторного движения. – Вестник Гомельского государственного технического университета им. П.О. Сухого, 2016, т. 1, № 3 (66), с. 32–36.
7. Исмагилов Ф.Р. и др. Генераторы возвратно-поступательного движения для автономных систем электроснабжения маломощных потребителей. Уфа: УГАТУ, 2014, 125 с.
8. Иванов А.С. и др. Численное моделирование динамического режима работы линейного электромагнитного двигателя лабораторного шейкера. – Электричество, 2020, № 5, с. 54–60.
9. Старостин А.Г. Методы проектирования электромагнитных механизмов постоянного тока с заданными динамическими параметрами: автореф. дис. … канд. техн. наук. Новочеркасск, 2006, 234 с.
10. Парфенов А.Г. Колебания и волны, 2010 [Электрон. ресурс], URL: https://koi.tspu.ru/waves/ (дата обращения 29.09.2022).
11. Программное обеспечение COMSOL Multiphysics [Электрон. ресурс], URL: https://www.comsol.ru/comsol-multiphysics (дата обращения 29.09.2022).
12. Дытнерский Ю.И. Процессы и аппараты химической технологии: Часть 1. Теоретические основы процессов химической технологии. Гидромеханические и тепловые процессы и аппараты. М.: Химия, 1995 , 400 с.
13. ООО «ЭКРОСХИМ»: Шейкеры лабораторные [Электрон. ресурс], URL: https://ecohim.ru/catalog/laboratornoe-oborudovanie-i-pribory/sheykery-laboratornye- (дата обращения 28.07.2022).
14. US-1350L Шейкер лабораторный возвратно-поступательный [Электрон. ресурс], URL: https://ulabrus.ru/katalog_tovarov1/obwelaboratornoe_oborudovanie/shejkery_laboratornye/us1350l_shejker_laboratornyj_vozvratnopostupatelnyj (дата обращения 02.09.2022).
15. Каримов И. Теоретическая механика. [Электрон. ресурс], URL: http://www.teoretmeh.ru/ (дата обращения 29.08.2022).
#
1. Artobolevskiy I.I. Teoriya mekhanizmov i mashin (Theory of Mechanisms and Machines). М.: Nauka, 1988, 640 p.
2. Medvedev V.Т. et al. Vibratsii i shum elektricheskih mashin, transformatorov i reaktorov (Vibrations and Noise of Electrical Machines, Transformers and Reactors). М.: Izd-vo MEI, 2018, 426 p.
3. Shturman G.I., Aronov R.L. Elektrichestvo – in Russ. (Electricity), 1947, No. 2, pp. 54–29.
4. Moshkin V.I., Neyman V.Yu., Ugarov G.G. Impul'snye lineynye elektromagnitnye dvigateli (Pulsed Linear Electromagnetic Motors). Kurgan: Izd-vo Kurganskogo gos. un-ta, 2010, 220 p.
5. Akita S. et al. Design Analysis of a Line-Start Permanent Magnet Linear Synchronous Motor. – 11th International Symposium on Linear Drives for Industry Applications, 2017, DOI:10.23919/LDIA.2017.8097257.
6. Todarev V.V., Logvin V.V., Grachev S.А. Vestnik Gomel'skogo gosudarstvennogo tekhnicheskogo universiteta im. P.O. Suhogo – in Russ. (Bulletin of the Gomel State Technical University n.a. P.O. Sukhoi), 2016, vol. 1, No. 3 (66), pp. 32–36.
7. Ismagilov F.R. et al. Generatory vozvratno-postupatel'nogo dvizheniya dlya avtonomnyh sistem elektrosnabzheniya malomoshchnyh potrebiteley (Reciprocating Motion Generators for Autonomous Power Supply Systems for Low-Power Consumers). Ufа: UGАGU, 2014, 125 p.
8. Ivanov А.S. et al. Elektrichestvo – in Russ. (Electricity), 2020, No. 5, pp. 54–60.
9. Starostin A.G. Metody proektirovaniya elektromagnitnyh mekhanizmov postoyannogo toka s zadannymi dinamicheskimi parametrami: avtoref. dis. … kand. tekhn. nauk (Methods of Designing DC Electromagnetic Mechanisms with Specified Dynamic Parameters: Abstract. Dis. ... Cand. Sci. (Eng.)). Novocherkassk, 2006, 234 p.
10. Parfenov A.G. Kolebaniya i volny (Vibrations and Waves), 2010 [Electron. resource], URL: https://koi.tspu.ru/waves/ (Date of appeal 29.09.2022).
11. COMSOL Multiphysics [Electron. resource], URL: https://www.comsol.ru/comsol-multiphysics (Date of appeal 29.09.2022).
12. Dytnerskiy Yu.I. Protsessy i apparaty himicheskoy tekhnologii: Chast' 1. Teoreticheskie osnovy protsessov himicheskoy tekhnologii. Gidromekhanicheskie i teplovye protsessy i apparaty (Processes and devices of chemical technology: Part 1. Theoretical foundations of chemical technology processes. Hydromechanical and thermal processes and apparatuses). М.: Himiya, 1995, 400 p.
13. OOO «EKROSKHIM»: Sheykery laboratornye (EKROSCHEM LLC: Laboratory Shakers) [Electron. resource], URL: https://ecohim.ru/catalog/laboratornoe-oborudovanie-i-pribory/sheykery-laboratornye- (Date of appeal 28.07.2022).
14. US-1350L Sheyker laboratornyy vozvratno-postupatel'nyy (Laboratory Reciprocating Shaker) [Electron. resource], URL: https://ulabrus.ru/katalog_tovarov1/obwelaboratornoe_oborudovanie/shejkery_laboratornye/us1350l_shejker_laboratornyj_vozvratnopostu-patelnyj (Date of appeal 02.09.2022).
15. Karimov I. Teoreticheskaya mekhanika (Theoretical Mecha-nics). [Electron. resource], URL: http://www.teoretmeh.ru/ (Date of appeal 29.08.2022).
Published
2022-12-19
Section
Article