Consideration of Wire Transposition in Modeling the Electromagnetic Effects of Power Lines on Pipelines

  • Andrey V. KRYUKOV
  • Pavel V. ILYUSHIN
  • Konstantin V. SUSLOV
  • Aleksandr E. KRYUKOV
Keywords: electric power systems, high-voltage power lines, transposition of wires, electromag-netic influence on pipelines

Abstract

In some sections, high-voltage power lines may come close to pipelines. This may give rise to problems concerned with ensuring safety of personnel and protecting the structure from corrosion. An analysis of publications in this field shows that many studies aimed at solving these problems place focus on determining the electromagnetic effects of power lines on extended metal structures. However, the authors of these publications have not set out a unified technique that would make it possible to determine the voltages induced on the structural components and the currents flowing through the pipeline. Such a technique can be implemented based on methods for modeling the electric power systems operation modes in phase coordinates. The article gives its further development and presents the results of studies aimed at solving the problem of considering the transposition of wires in modeling the electromagnetic effects of power lines on pipelines. The developed technique and digital models make it possible to adequately consider the transposition of wires in determining the voltages induced on the parts of a parallel pipeline and the currents flowing through the pipe. Based on them, it is possible to reasonably select measures to ensure the safety of personnel serving the structure, as well as to develop methods and means of protection against corrosion.

Author Biographies

Andrey V. KRYUKOV

(Irkutsk State Transport University; Irkutsk National Research Technical University, Irkutsk, Russia) – Professor of the Electric Power Engineering of Transport Dept.; Professor of the Power Supply and Electrical Engineering Dept., Dr. Sci. (Eng.).

Pavel V. ILYUSHIN

(Energy Research Institute of Russian Academy of Sciences, Moscow, Russia) – Head of the Center for Intelligent Electric Power Systems and Distributed Energy, Dr. Sci. (Eng.).

Konstantin V. SUSLOV

(National Research University (Moscow Power Engineering Institute, Moscow; Irkutsk National Research Technical University, Irkutsk, Russia) – Professor of the Hydropower and Renewable Energy Sources Dept.; Professor of the Power Supply and Electrical Engineering Dept., Dr. Sci. (Eng.).

Aleksandr E. KRYUKOV

(Irkutsk National Research Technical University, Irkutsk, Russia) – Post-Graduate Student of the Power Plants, Networks and Systems Dept.

References

1. Колечицкий Е.С., Королев И.В. Электромагнитное влияние высоковольтных линий электропередачи. – Электричество, 2016, № 2, с. 28–38.
2. Айдарова А.Р., Абылгазиев Ж.С., Асанова С.М. Моделирование взаимных электромагнитных влияний смежных линий электропередачи. – Аpriori. Cерия: Естественные и технические науки, 2015, № 5, с. 1–10.
3. Бодров П.А. и др. Моделирование электромагнитного влияния контактной сети в схеме замещения воздушной линии электропередачи. – Вестник Ростовского государственного университета путей сообщения, 2018, № 1 (69), с. 119–125.
4. Крапивский Е.И., Яблучанский П.А. Алгоритм расчета электромагнитного влияния линии электропередачи переменного тока на подземный трубопровод. – Горный информационно-аналитический бюллетень (научно-технический журнал), 2013, № 2, с. 213–224.
5. Черных Н.О., Быковская Л.В. Влияние ЭМП ЛЭП высокого и сверхвысокого напряжений на объекты техносферы. – Инновационная парадигма развития современной науки, 2021, с. 121–126.
6. Беляев А.Э., Будевич Е.А., Вычерова Н.Р. Анализ электромагнитных помех между линиями электропередач и подземными трубопроводами. – World Science: Problems and Innovations, Пенза, 2021, с. 41–50.
7. Пискунков А.А. и др. Влияние воздушных линий переменного тока на стальные трубопроводы. – Градостроительство. Инфраструктура. Коммуникации, 2019, № 3 (16), с. 42–46.
8. Ракито О.Н. Анализ подходов к оценке влияния высоковольтных линий электропередач переменного тока на подземные трубопроводы. – Оборудование и технологии для нефтегазового комплекса, 2022, № 2 (128), с. 79–87.
9. Мюльбаер А.А. Влияние воздушных линий переменного тока на стальные трубопроводы. – Технические науки – от теории к практике, 2014, № 31, с. 45–52.
10. Мокроусова Ю.В., Мюльбаер А.А. Применение компенсирующих проводников для снижения магнитного влияния линий электропередачи на магистральные трубопроводы. – Актуальные проблемы электронного приборостроения, 2018, т. 7, с. 257–261.
11. Шамшетдинов К.Л. Особенности электрометрического контроля противокоррозионной защиты подземных трубопроводов в условиях влияния высоковольтных линий электропередач. – Трубопроводный транспорт: теория и практика, 2008, № 1 (11), с. 58–60.
12. Захаров Д.Б., Пионт Д.Ю., Яблучанский П.А. Оценка влияния высоковольтной линии электропередачи на подземный трубопровод и его защита от воздействия наведенного переменного тока. – Газовая промышленность, 2018, № 9 (774), с. 84–90.
13. Чебаков Н.А., Амирджанов М.В., Канаева В.А. Негативное влияние воздушных линий электропередачи (ВЛ) на стальной трубопровод. – Нефтегазовый терминал, 2022, вып. 23, т. 1, с. 148–151.
14. Haifeng S. et al. Study on Electromagnetic Influence of 750 kV AC Transmission Lines on Multiple Buried Pipelines. – Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). 2016, DOI:10.1109/APEMC.2016.7522725.
15. Liu X-T., Wang W., Yu H. Analysis of Mutual Electromagnetic Influence between Transmission Line and Buried Pipeline. – 4th International Conference on Information Science and Control Engineering (ICISCE). 2017, DOI:10.1109/ICISCE.2017.293.
16. Lu D. et al. Mitigation of Electromagnetic Influence on the Buried Metal Pipeline near Overhead AC Transmission Line. – Sixth International Conference on Electromagnetic Field Problems and Applications., 2012, DOI: 10.1109/ICEF.2012.6310384.
17. Adamek M., Vostracky Z. Interference from Transmission Lines to Buried Pipelines. – 16th International Scientific Conference on Electric Power Engineering (EPE), 2015, DOI:10.1109/EPE.2015. 7161133.
18. Wenliang Z. et al. A Electromagnetic Effect Calculation Method for Engineering Design on Oil/Gas Pipelines Due to 1000 kV AC Transmission Line in Single-Phase Ground Fault. – Asia-Pacific International Symposium on Electromagnetic Compatibility, 2010, DOI:10.1109/APEMC.2010.5475707.
19. Janda Z., Nohác̆ K. Analysis of the Inductive Effects of Overhead Lines to Close Pipelines. – Proceedings of the 2014 15th International Scientific Conference on Electric Power Engineering (EPE), 2014, DOI:10.1109/EPE.2014.6839430.
20. Czumbil L. et al. Optimal Design of the Pipeline Right-of-Way Nearby High Voltage Transmission Lines Using Genetic Algorithms. – 50th International Universities Power Engineering Conference (UPEC). 2015, DOI:10.1109/UPEC.2015.7339841.
21. Mu W. et al. A Rapid Modeling for Analysis the Effect of Transmission Line to Oil and Gas Pipeline. – Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). 2016, DOI:10.1109/APEMC.2016.7522916.
22. Hossam-Eldin A.A., Mokhtar W. Electromagnetic Interference between Electrical Power Lines and Neighboring Pipelines. – 19th International Conference on Systems Engineering, 2008, DOI:10.1109/ICSEng.2008.82.
23. Закарюкин В.П., Крюков А.В. Сложнонесимметричные режимы электрических систем. Иркутск: Изд-во Иркут. ун-та, 2005, 273 c.
24. Zakaryukin V.P., Kryukov A.V. Determination of the Induced Voltages when Nonparallel Power Lines are Adjacent to One Another. – Power Technology and Engineering, 2015, vol. 49(4), pp. 304–309, DOI:10.1007/s10749-015-0620-4.
25. Cherepanov A.V., Kryukov A.E. Determining the Induced Voltages, Generated by High-Voltage OPL, on a Pipeline in the Presence of Longitudinal and Transversal Unsymmetry. – International Ural Conference on Electrical Power Engineering (UralCon), 2020, pp. 142–146, DOI:10.1109/UralCon49858.2020.9216260.
26. Carson I.R. Wave Propagation in Overhead Wires with Ground Return. – Bell System Technical Journal, 1926, vol. 5, pp. 539–554, DOI:10.1002/J.1538-7305.1926.TB00122.X.
---
Исследования выполнены в рамках государственного задания «Проведение прикладных научных исследований» по теме «Повышение качества электрической энергии и электромагнитной безопасности в системах электроснабжения железнодорожного транспорта, оснащённых устройствами Smart Grid, путем применения методов и средств математического моделирования на основе фазных координат» (проект № АААА-А20-120111690029-4 от 16.11.2020)
#
1. Kolechitskiy E.S., Korolev I.V. Elektrichestvo – in Russ. (Electricity), 2016, No. 2, pp. 28–38.
2. Aydarova A.R., Abylgaziev ZH.S., Asanova S.М. Аpriori. Ceriya: Estestvennye i tekhnicheskie nauki – in Russ. (Аpriori. Series: Natural and Technical Sciences), 2015, No. 5, pp. 1–10.
3. Bodrov P.А. et al. Vestnik Rostovskogo gosudarstvennogo universiteta putey soobshcheniya – in Russ. (Bulletin of the Rostov State University of Railways), 2018, No. 1 (69), pp. 119–125.
4. Krapivskiy E.I., Yabluchanskiy P.А. Gornyy informatsionno-analiticheskiy byulleten' (nauchno-tekhnicheskiy zhurnal) – in Russ. (Mining Information and Analytical Bulletin (Scientific and Technical Journal)), 2013, No. 2, pp. 213–224.
5. Chernyh N.O., Bykovskaya L.V. Innovatsionnaya paradigma razvitiya sovremennoy nauki – in Russ. (Innovative Paradigm of Modern Science Development), 2021, pp. 121–126.
6. Belyaev A.E., Budevich E.A., Vycherova N.R. World Science: Problems and Innovations, Penza, 2021, pp. 41–50.
7. Piskunkov А.А. et al. Gradostroitel'stvo. Infrastruktura. Kommunikatsii – in Russ. (Urban planning. Infrastructure. Communications), 2019, No. 3 (16), pp. 42–46.
8. Rakito O.N. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa – in Russ. (Equipment and Technologies for the Oil and Gas Complex), 2022, No. 2 (128), pp. 79–87.
9. Myul'baer А.А. Tekhnicheskie nauki – ot teorii k praktike – in Russ. (Technical Sciences – from Theory to Practice), 2014, No. 31, pp. 45–52.
10. Mokrousova Yu.V., Myul'baer А.А. Aktual'nye problemy elektronnogo priborostroeniya – in Russ. (Actual Problems of Electronic Instrumentation), 2018, vol. 7, pp. 257–261.
11. Shamshetdinov K.L. Truboprovodnyy transport: teoriya i praktika – in Russ. (Pipeline Transport: Theory and Practice), 2008, No. 1 (11), pp. 58–60.
12. Zaharov D.B., Piont D.Yu., Yabluchanskiy P.А. Gazovaya promyshlennost' – in Russ. (Gas Industry), 2018, No. 9 (774), pp. 84–90.
13. Chebakov N.A., Amirdzhanov M.V., Kanaeva V.А. Neftegazovyy terminal – in Russ. (Oil and Gas Terminal), 2022, iss. 23, vol. 1, pp. 148–151.
14. Haifeng S. et al. Study on Electromagnetic Influence of 750 kV AC Transmission Lines on Multiple Buried Pipelines. – Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). 2016, DOI:10.1109/APEMC.2016.7522725.
15. Liu X-T., Wang W., Yu H. Analysis of Mutual Electromagnetic Influence between Transmission Line and Buried Pipeline. – 4th International Conference on Information Science and Control Engineering (ICISCE). 2017, DOI:10.1109/ICISCE.2017.293.
16. Lu D. et al. Mitigation of Electromagnetic Influence on the Buried Metal Pipeline near Overhead AC Transmission Line. – Sixth International Conference on Electromagnetic Field Problems and Applications., 2012, DOI: 10.1109/ICEF.2012.6310384.
17. Adamek M., Vostracky Z. Interference from Transmission Lines to Buried Pipelines. – 16th International Scientific Conference on Electric Power Engineering (EPE), 2015, DOI:10.1109/EPE. 2015.7161133.
18. Wenliang Z. et al. A Electromagnetic Effect Calculation Method for Engineering Design on Oil/Gas Pipelines Due to 1000 kV AC Transmission Line in Single-Phase Ground Fault. – Asia-Pacific International Symposium on Electromagnetic Compatibility, 2010, DOI:10.1109/APEMC.2010.5475707.
19. Janda Z., Nohác̆ K. Analysis of the Inductive Effects of Overhead Lines to Close Pipelines. – Proceedings of the 2014 15th International Scientific Conference on Electric Power Engineering (EPE), 2014, DOI:10.1109/EPE.2014.6839430.
20. Czumbil L. et al. Optimal Design of the Pipeline Right-of-Way Nearby High Voltage Transmission Lines Using Genetic Algorithms. – 50th International Universities Power Engineering Conference (UPEC). 2015, DOI:10.1109/UPEC.2015.7339841.
21. Mu W. et al. A Rapid Modeling for Analysis the Effect of Transmission Line to Oil and Gas Pipeline. –Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). 2016, DOI:10.1109/APEMC.2016.7522916.
22. Hossam-Eldin A.A., Mokhtar W. Electromagnetic Interference between Electrical Power Lines and Neighboring Pipelines. – 19th International Conference on Systems Engineering, 2008, DOI:10.1109/ICSEng.2008.82.
23. Zakaryukin V.P., Kryukov A.V. Slozhnonesimmetrichnye rezhimy elektricheskih sistem (Complex-Asymmetric Modes of Electrical Systems). Irkutsk: Izd-vо Irkut. un-ta, 2005, 273 p.
24. Zakaryukin V.P., Kryukov A.V. Determination of the Induced Voltages when Nonparallel Power Lines are Adjacent to One Another. – Power Technology and Engineering, 2015, vol. 49(4), pp. 304–309, DOI:10.1007/s10749-015-0620-4.
25. Cherepanov A.V., Kryukov A.E. Determining the Induced Voltages, Generated by High-Voltage OPL, on a Pipeline in the Presence of Longitudinal and Transversal Unsymmetry. – International Ural Conference on Electrical Power Engineering (UralCon), 2020, pp. 142–146, DOI:10.1109/UralCon49858.2020.9216260.
26. Carson I.R. Wave Propagation in Overhead Wires with Ground Return. – Bell System Technical Journal, 1926, vol. 5, pp. 539–554, DOI:10.1002/J.1538-7305.1926.TB00122.X
---
These studies have been carried out within the framework of the State Assignment “Conducting applied scientific research” on the topic “Improvement of electric power quality and enhancement of electromagnetic safety in railway power supply systems equipped with Smart Grid devices by applying methods and means of mathematical modeling in phase coordinates” (Project No. AAAAA20-120111690029-4 dated 16.11.2020)
Published
2023-01-26
Section
Article