Selecting a Demand Management Strategy for Efficient Operation of a Commercial and Industrial Microgrid

  • Elena S. AKSAEVA
  • Anna M. GLAZUNOVA
Keywords: commercial and industrial microgrid, control strategy, active consumer, energy storage systems, measurements

Abstract

The recent years have seen a tendency toward a situation in which some consumers leave the Unified Energy System (UES) of Russia. Under such conditions, commercial and industrial microgrids (CIMs) are a solution that helps secure the power system reliability. A CIM is a local power area connected to the UES by a power line and containing its own power plants, an electric network system, and a consumer. The problem of controlling the CIM electrical operation modes subject to fulfilling the condition of maintaining the power flow from the UES becomes of special relevance if the CIM contains power plants operating on renewable energy sources. In this case, active consumers and energy storage systems play an important role in keeping a power balance in the CIM. The purpose of the study is to select a demand management program, which is a constituent part of the strategy for optimal control of the CIM operation modes aimed at maintaining the power flow from the UES within the specified range.

Author Biographies

Elena S. AKSAEVA

(L.A. Melentiev Institute of Energy Systems of the Siberian Branch of the Russian Academy of Sciences., Irkutsk, Russia) – Researcher of the Electric Power Systems Dept., Cand. Sci. (Eng.).

Anna M. GLAZUNOVA

(L.A. Melentiev Institute of Energy Systems of the Siberian Branch of the Russian Academy of Sciences., Irkutsk, Russia) – Senior Research of the Electric Power Systems Dept., Dr.Sci. (Eng.), Docent.

References

1. Дацко К.А. Активные энергокомплексы. – Энергетическая политика, 2020, № 6(148), с. 64–75.
2. Волобуев А. Розничных потребителей энергии хотят приравнять к оптовым. – Ведомости, 2020 [Электрон. ресурс], URL: https://www.vedomosti.ru/business/articles/2020/12/28/852835-roz-nichnih-potrebitelei (дата обращения 30.12.2022).
3. Чаусов И., Бокарев Б., Сидорович В. Активные энергетические комплексы – первый шаг к промышленным микрогридам в России: экспертно-аналитический доклад. М.: Инфраструктурный центр Энерджинет, 2020, 58 с.
4. Постановление Правительства РФ от 21 марта 2020г. № 320 «О внесении изменений в некоторые акты Провительства Российской Федерации по вопросам функционирования активных энергетических комплексов».
5. Кулешов М., Рычков С. Концепция функционирования агрегаторов распределенных энергетических ресурсов в составе Единой энергетической системы России [Электрон. ресурс], URL: https://www.so-ups.ru/fileadmin/files/company/markets/dr/docs/dr_agregator_concept.pdf (дата обращения 30.12.2022).
6. Silva B.N., Khan M., Han K. Futuristic Sustainable Energy Management in Smart Environments: a Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities. – Sustainability, 2020, vol. 12(14), DOI:10.3390/su12145561.
7. Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them: A Report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005. U.S. Department of Energy, 2006, 97 p.
8. Концепция развития рынка систем хранения электроэнергии в Российской Федерации. 2017 [Электрон. ресурс], URL: https://minenergo.gov.ru/view-pdf/9013/74739 (дата обращения 26.12.2022).
9. Wu F.-B., Yang B., Ye J.-L. Grid-Scale Еnergy Storage Systems and Applications. Academic Press, 2019, 295 p., DOI:10.1016/B978-0-12-815292-8.00004-6.
10. Зырянов В.М., Кирьянова Н.Г., Коротков И.Ю. Системы накопления энергии: российский и зарубежный опыт. – Энергетическая политика, 2020, № 6(148), с. 76–86.
11. Системы накопления электроэнергии Группы «РОСНАНО» повысят надежность электроснабжения в 10 регионах Центрального и Приволжского федеральных округов [Электрон. ресурс], URL: https://www.rusnano.com/news/20211216-rosnano-sistemy-nakop-leniya-elektroenergii-povysyat-nadezhnost-elektrosnabzheniya-v-10-regionakh-tsentralnogo-i-privolzhskogo-federalnykh-okrugov (дата обращения 01.07.2022).
12. РусГидро разработало инновационный гибридный накопитель энергии [Электрон. ресурс], URL: http://www.rushydro.ru/press/news/115370.html (дата обращения 26.12.2022).
13. Total Energies Launches the Largest Battery-Based Energy Storage Site in France [Электрон. ресурс], URL: https://totalenergies.com/media/news/press-releases/totalenergies-launches-largest-battery-based-energy-storage-site-france (дата обращения 26.12.2022).
14. Vattenfall. Bringing Generation and Storage Together in a Smarter Solution. Vattenfall AB, 2022 [Электрон. ресурс], URL: https://careers.vattenfall.com/activities/solar-battery (дата обращения 01.07.2022).
15. Васильев А. Накопители энергии для эффективной работы энергосистемы. – Электротехнический рынок, 2019, т. 3, № 87, с. 20–24.
16. Vestas. Plant and Energy Solutions. Hibrid Integration [Электрон. ресурс], URL: https://www.vestas.com/en/products/plant-ener-gy-solutions#accordion-848dec8757-item-af1ed34e4b. (дата обращения 26.12.2022).
17. ГОСТ 58092.2.1-2020. Системы накопления электрической энергии (СНЭЭ). Параметры установок и методы испытаний. Общее описание. М.: Стандартинформ, 2020, 34 с.
18. Glazunova A.M. Development of a Day-Ahead Demand Side Management Strategy to Improve the Microgrid Efficiency. – IFAC CPES, 2022, vol. 55(9), pp. 256–261, DOI: 10.1016/j.ifa-col.2022.07.045.
19. Глазунова А.М., Аксаева Е.С. О достоверизации измерений электроэнергетической системы с накопителями электроэнергии. – Электричество, 2020, № 4, с. 44–51.
---
Работа выполнена в рамках проекта государственного задания (№ FWEU-2021-0001) программы фундаментальных исследований РФ на 2021–2030 гг.
#
1. Datsko К.А. Energeticheskaya politika – in Russ. (Energy Policy), 2020, No. 6(148), pp. 64–75.
2. Volobuev А. Vedomosti – in Russ. (Statements), 2020 [Electron. resource], URL: https://www.vedomosti.ru/business/articles/2020/ 12/28/852835-roznichnih-potrebitelei (Date of appeal 30.12.2022).
3. Chausov I., Bokarev B., Sidorovich V. Aktivnye energetiches-kie kompleksy – pervyy shag k promyshlennym mikrogridam v Rossii: ekspertno-analiticheskiy doklad (Active Energy Complexes are the First Step Towards Industrial Microgrids in Russia: Expert and Analytical Report). М.: Infrastrukturnyy tsentr Enerdzhinet, 2020, 58 p.
4. Postanovlenie Pravitel'stva RF ot 21 marta 2020g. № 320 (Resolution of the Government of the Russian Federation dated March 21, 2020 No. 320).
5. Kuleshov M., Rychkov S. Kontseptsiya funktsionirovaniya agregatorov raspredelennyh energeticheskih resursov v sostave Edinoy energeticheskoy sistemy Rossii (The concept of Functioning of Distributed Energy Resources Aggregators as Part of the Unified Energy System of Russia) [Electron. resource], URL: https://www.so-ups.ru/f ileadmin/files/company/markets/dr/docs/dr_agregator_concept.pdf (Date of appeal 30.12.2022).
6. Silva B.N., Khan M., Han K. Futuristic Sustainable Energy Management in Smart Environments: a Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities. – Sustainability, 2020, vol. 12(14), DOI:10.3390/su12145561.
7. Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them: A Report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005. U.S. Department of Energy, 2006, 97 p.
8. Kontseptsiya razvitiya rynka sistem hraneniya elektroenergii v Rossiyskoy Federatsii (The Market Development Concept of Electric Power Storage Systems in the Russian Federation). 2017 [Electron. resource], URL: https://minenergo.gov.ru/view-pdf/9013/74739 (Date of appeal 26.12.2022).
9. Wu F.-B., Yang B., Ye J.-L. Grid-Scale Еnergy Storage Systems and Applications. Academic Press, 2019, 295 p., DOI:10.1016/B978-0-12-815292-8.00004-6.
10. Zyryanov V.M., Kir'yanova N.G., Korotkov I.Yu. Energeticheskaya politika – in Russ. (Energy Policy), 2020, No. 6 (148), pp. 76–86.
11. Sistemy nakopleniya elektroenergii Gruppy «ROSNANO» (Energy Storage Systems of the RUSNANO Group) [Electron. resource], URL: https://www.rusnano.com/news/20211216-rosnano-sistemy-na-kopleniya-elektroenergii-povysyat-nadezhnost-elektrosnabzheniya-v-10-regionakh-tsentralnogo-i-privolzhskogo-federalnykh-okrugov (Date of appeal 01.07.2022).
12. RusGidro razrabotalo innovatsionnyy gibridnyy nakopitel' energii (RusHydro Has Developed an Innovative Hybrid Energy Storage Device) [Electron. resource], URL: http://www.rushydro.ru/press/news/115370.html (Date of appeal 26.12.2022).
13. Total Energies Launches the Largest Battery-Based Energy Storage Site in France [Electron. resource], URL: https://totalenergies.com/media/news/press-releases/totalenergies-launches-largest-battery-based-energy-storage-site-france (Date of appeal 26.12.2022).
14. Vattenfall. Bringing Generation and Storage Together in a Smarter Solution. Vattenfall AB, 2022 [Electron. resource], URL: https://careers.vattenfall.com/activities/solar-battery (Date of appeal 01.07.2022).
15. Vasil'ev А. Elektrotekhnicheskiy rynok – in Russ. (Electrical Engineering Market), 2019, vol. 3, No. 87, pp. 20–24.
16. Vestas. Plant and Energy Solutions. Hibrid Integration [Electron. resource], URL: https://www.vestas.com/en/products/plant-energy-solutions#accordion-848dec8757-item-af1ed34e4b. (Date of appeal 26.12.2022).
17. GОSТ 58092.2.1-2020. Sistemy nakopleniya elektricheskoy energii. Parametry ustanovok i metody ispytaniy. Obshchee opisanie (Electric Energy Storage (ESS) Systems. Unit Parameters and Test Methods. General Specification). М.: Standartinform, 2020, 34 p.
18. Glazunova A.M. Development of a Day-Ahead Demand Side Management Strategy to Improve the Microgrid Efficiency. – IFAC CPES, 2022, vol. 55(9), pp. 256–261, DOI: 10.1016/j.ifacol.2022.07.045.
19. Glazunova A.M., Aksaeva E.S. Elektrichestvo – in Russ. (Electricity), 2020, No. 4, pp. 44–51.
---
The work was carried out within the framework of the draft state assignment (no. FWEU-2021-0001) of the fundamental research program of the Russian Federation for 2021–2030.
Published
2023-02-20
Section
Article