Features of the Relaxation Process in an RC Circuit under the Influence of a Sinusoidal Voltage
Abstract
The article is devoted to the study of the properties of the relaxation process in a nonlinear electrical circuit under the sinusoidal voltage influence. Electronic devices and processes the operation of which is based on relaxation principles are sources of specific series of pulses, the monitoring of which allows one to draw conclusions about the technical parameters of these devices and processes. The occurrence of a series of partial discharges in a high-voltage device can serve as an example. An essential factor of partial discharges is their multiplicity both in time and in space, which are dispersed in an a priori unknown number of defects. The aim is to determine the number of defects and to perform appropriate grouping of the entire set of partial discharges by defects. Internal deterministic correlations derived as a result of solving the problem and presented in terms of the classical theory of electrical circuits should be regarded as a key to solving the problem that was set forth. Analytical correlations for the deterministic component of partial discharges in potential electrical insulation defects are revealed. The obtained correlations characterize the time intervals between individual discharges inside the insulation defect. These time intervals are uniquely related to the defect parameters and can serve as a basis for identifying this defect against the background of other partial discharges. As an example, the result of mathematically modeling a relaxation process with the specified parameters is given.
References
2. Овсянников А.Г. Недомолвки в теории и недостатки в практике регистрации частичных разрядов, 2015 [Электрон. ресурс], URL: https://dimrus.ru/conf2015.html (дата обращения 19.02.2023).
3. Воденников Д.А. и др. Влияние запаздывания на напряжение возникновения частичных разрядов в изоляции трансформатора. – Электроэнергия. Передача и распределение, 2020, № 2(59), с. 108–113.
4. Голенищев-Кутузов А.В. и др. Дистанционная диагностика дефектов в высоковольтных изоляторах. – Известия высших учебных заведений. Проблемы энергетики, 2020, т. 22, № 2, с. 117–127.
5. Golenishchev-Kutuzov A.V. et al. Monitoring System of High Voltage Dielectric Equipment. – E3S Web of Conferences, 2021, 288:01088, DOI:10.1051/e3sconf/202128801088.
6. Туркин Д.Г., Силин Н.В. К вопросу создания современных средств диагностики высоковольтного оборудования. – Высокие технологии и инновации в науке: сборник избранных статей Международной научной конференции. СПб., 2020, с. 210–215.
7. Tetiora S.Yu., Silin N.V., Petrunko N.N. To the Evaluation of the Insulation State Based on the Analysis of Partial Discharges. – Journal of Physics: Conference Series, 2021, 2096(1):012192, DOI:10.1088/1742-6596/2096/1/012192.
8. Chan J.C., Ma H., Saha T.K. Time-Frequency Sparsity Map on Automatic Partial Discharge Sources Separation for Power Transformer Condition Assessment. – IEEE Transactions on Dielectrics and Electrical Insulation, 2015, vol. 22, No. 4, pp. 2271–2283, DOI:10.1109/TDEI.2015.004836.
9. Ma H. et al. Pattern Recognition Techniques and Their Applications for Automatic Classification of Artificial Partial Discharge Sources. – IEEE Transactions on Dielectrics and Electrical Insulation, 2013, vol. 20(2), pp. 468–478, DOI:10.1109/TDEI.2013.6508749.
10. Judd M.D., Yang L., Hunter I.B. Partial Discharge Monitoring of Power Transformers Using UHF Sensors. Part I: Sensors and Signal Interpretation. – IEEE Electrical Insulation Magazine, 2005, vol. 21(2), pp. 5–14, DOI:10.1109/MEI.2005.1412214.
11. Fan W. et al. Comparison Study of Partial Discharge Detection Methods for Switchgears. – International Conference on Condition Monitoring and Diagnosis (CMD), 2016, рр. 318–322, DOI:10.1109/CMD.2016.7757815.
12. Киншт Н.В., Петрунько Н.Н. Дискретная диагностическая модель множества дефектов изоляции высоковольтного оборудования. – Автометрия, 2021, т. 57, № 2, с. 93–100.
13. Киншт Н.В., Петрунько Н.Н. Об оценке параметров частичных разрядов. – Электричество, 2018, № 2, с. 27–33.
14. Матханов П.Н. Основы анализа электрических цепей. Нелинейные цепи. М.: Высшая школа, 1977, 272 с.
15. Демирчян К.С. и др. Теоретические основы электротехники: Том `2. СПб.: Питер, 2003, 576 с.
#
1. Korobeynikov S.M., Ovsyannikov A.G. Fizicheskie mekhaniz-my chastichnyh razryadov (Physical Mechanisms of Partial Discharges). Novosibirsk: Izd-vo NGTU, 2022, 267 p.
2. Ovsyannikov A.G. Nedomolvki v teorii i nedostatki v praktike registratsii chastichnyh razryadov (Omissions in Theory and Shortcomings in the Practice of Registering Partial Discharges), 2015 [Electron. resource], URL: https://dimrus.ru/conf2015.html (Date of appeal 19.02.2023).
3. Vоdеnnikоv D.А. et al. Elektroenergiya. Peredacha i raspre-delenie – in Russ. (Electricity. Transmission and Distribution), 2020, No. 2(59), pp. 108–113.
4. Golenishchev-Kutuzov А.V. et al. Izvestiya vysshih uchebnyh zavedeniy. Problemy energetiki – in Russ. (News of Higher Education Institutions. Power Engineering Problems), 2020, vol. 22, No. 2, pp. 117–127.
5. Golenishchev-Kutuzov A.V. et al. Monitoring System of High Voltage Dielectric Equipment. – E3S Web of Conferences, 2021, 288:01088, DOI:10.1051/e3sconf/202128801088.
6. Тurkin D.G., Silin N.V. Vysokie tekhnologii i innovatsii v nauke: sbornik izbrannyh statey Mezhdunarodnoy nauchnoy konferentsii – in Russ. (High Technologies and Innovations in Science: a Collection of Selected Articles of the International Scientific Conference). SPb., 2020, pp. 210–215.
7. Tetiora S.Yu., Silin N.V., Petrunko N.N. To the Evaluation of the Insulation State Based on the Analysis of Partial Discharges. – Journal of Physics: Conference Series, 2021, 2096(1):012192, DOI:10.1088/1742-6596/2096/1/012192.
8. Chan J.C., Ma H., Saha T.K. Time-Frequency Sparsity Map on Automatic Partial Discharge Sources Separation for Power Transformer Condition Assessment. – IEEE Transactions on Dielectrics and Electrical Insulation, 2015, vol. 22, No. 4, pp. 2271–2283, DOI:10.1109/TDEI.2015.004836.
9. Ma H. et al. Pattern Recognition Techniques and Their Applications for Automatic Classification of Artificial Partial Discharge Sources. – IEEE Transactions on Dielectrics and Electrical Insulation, 2013, vol. 20(2), pp. 468–478, DOI:10.1109/TDEI.2013.6508749.
10. Judd M.D., Yang L., Hunter I.B. Partial Discharge Monitoring of Power Transformers Using UHF Sensors. Part I: Sensors and Signal Interpretation. – IEEE Electrical Insulation Magazine, 2005, vol. 21(2), pp. 5–14, DOI:10.1109/MEI.2005.1412214.
11. Fan W. et al. Comparison Study of Partial Discharge Detection Methods for Switchgears. – International Conference on Condition Monitoring and Diagnosis (CMD), 2016, рр. 318–322, DOI:10.1109/CMD.2016.7757815.
12. Kinsht N.V., Petrun'ko N.N. Avtometriya – in Russ. (Automet-ry), 2021, vol. 57, No. 2, pp. 93–100.
13. Kinsht N.V., Petrun'ko N.N. Elektrichestvo – in Russ. (Electri-city), 2018, No. 2, pp. 27–33.
14. Mathanov P.N. Osnovy analiza elektricheskih tsepey. Neliney-nye tsepi (Fundamentals of Electrical Circuit Analysis. Nonlinear Circuits). М.: Vysshaya shkola, 1977, 272 p.
15. Demirchyan K.S. et al. Teoreticheskie osnovy elektrotekhniki (Theoretical Foundations of Electrical Engineering): vol. 2. SPb.: Piter, 2003, 576 p.