Single-Ended Forward-Flybaсk Stabilized DC-DC Voltage Converter. Part. 1: Converter’s Power Stage

  • Daniil A. SHEVTSOV
  • Kirill A. MODESTOV
  • Philipp V. TIKHONOV
  • Natal'ya G. MANANNIKOVA
Keywords: DC-DC converter, forward-flyback converter, power stage, structure, modeling, transformer, magnetic core, coupling coefficient

Abstract

The article addresses the development of a single-ended single-transistor forward-flyback DC voltage converter. The classification of single-ended DC voltage converters is given, and their basic advantages and drawbacks are listed. In the first part, a new power stage structure of the converter being developed is proposed, which makes it possible to exclude pulsed overvoltages without power-dissipating protective RCD circuits caused by the transformer winding leakage inductance. The operation principle of the new power stage structure is described. The requirements posed to the magnetic cores of transformers for the new structure are described. The proposed scheme was investigated using computer simulation in the PSpice software. The computer model and time curves of the processes confirming the operability of the scheme are presented. The results of studying the effect the coupling coefficient between the transformer windings has on the overvoltage and cross instability are presented. The proposed power part structure of the forward-flyback DC voltage converter makes it possible to obtain a higher power output compared with the known single-ended forward-flyback power stages; it retains the operability in a wide variation range of the coupling coefficient between the transformer windings and provides high efficiency.

Author Biographies

Daniil A. SHEVTSOV

(Moscow Aviation Institute (National Research University), Moscow, Russia.) — Professor of the Electric Power, Electromechanical and Biotechnical Systems Dept., Dr. Sci. (Eng.), Professor.

Kirill A. MODESTOV

(Moscow Aviation Institute (National Research University), Moscow, Russia.) — Docentr of the Electric Power, Electromechanical and Biotechnical Systems Dept., Cand. Sci. (Eng.), Docent.

Philipp V. TIKHONOV

(Moscow Aviation Institute (National Research University), Moscow, Russia.) — Docentr of the Electric Power, Electromechanical and Biotechnical Systems Dept., Cand. Sci. (Eng.), Docent.

Natal'ya G. MANANNIKOVA

(Moscow Aviation Institute (National Research University), Moscow, Russia.) — Master Student of the Electric Power, Electromechanical and Biotechnical Systems Dept.

References

1. Наундорф У. Аналоговая электроника: основы, расчет, моделирование. М.: Техносфера, 2008, 471 с.
2. Хоровиц П., Хилл У. Искусство схемотехники. М.: Бином, 2014, 704 с.
3. Мелешин В.И., Овчинников Д.А. Управление транзисторными преобразователями электроэнергии. М.: Техносфера, 2011, 577 с.
4. Браун М. Источники питания. Расчет и конструирование. Киев: МК-Пресс, 2007, 288 с.
5. Розаноов Ю.К. Силовая электроника: эволюция и применение. М.: Знак, 2018, 136 с.
6. Дмитриков В.Ф., Сергеев В.В., Самылин И.Н. Повышение эффективности преобразовательных и радиотехнических устройств. М.: Радио и связь, 2005, 424 с.
7. Шевцов Д.А. и др. Стабилизированный источник вторичного электропитания с прямо-обратноходовым однотранзисторным силовым преобразовательным каскадом. – Практическая силовая электроника, 2022, № 1 (85), с. 30–34.
8. Пат. RU2779933C1. Однотактный прямо-обратноходовой преобразователь / Д.А. Шевцов и др., 2022.
9. Amorphous Metal Distribution Trasformers [Электрон. ресурс], URL: https://metglas.com/wp-content/uploads/2016/12/Metal_Powers_Brochure.pdf (дата обращения 17.02.2023).
10. Стародубцев Ю.Н., Белозеров В.Я. Магнитные свойства аморфных и нанокристаллических сплавов. Екатеринбург: Изд-во Урал. ун-та, 2002, 384 с.
11. Легостаев Н.С. Магнитные элементы электронных устройств. Томск: Эль Контент, 2014, 186 с.
12. Производство материалов и компонентов из аморфных и нанокристаллических сплавов для силовой электроники и приборостроения. Екатеринбург: НПП “Гаммамет”, 2013, 51 с.
13. ГОСТ Р 54073–2017. Системы электроснабжения самолетов и вертолетов. Общие требования и нормы качества электроэнергии. М.: Стандартинформ, 2018, 36 с.
14. Сорокин В.С., Антипов Б.Л., Лазарев Н.П. Материалы и элементы электронной техники: т. 2. СПБ.: Лань, 2016, 384 с.
15. Шевцов Д.А. Справочное пособие по зарубежным ИМС управления импульсными источниками вторичного электропитания. М.: АО «Звезды и С», 1994, 195 с.
#
1. Naundorf U. Analogovaya elektronika: osnovy, raschet, modelirovanie (Analog Electronics: Fundamentals, Calculation, Modeling). М.: Tekhnosfera, 2008, 471 p.
2. Horovits P., Hill U. Iskusstvo skhemotekhniki (The Art of Circuit Engineering). М.: Binom, 2014, 704 p.
3. Meleshin V.I., Ovchinnikov D.А. Upravlenie tranzistornymi preobrazovatelyami elektroenergii (Control of Transistor Electric Power Converters). М.: Tekhnosfera, 2011, 577 p.
4. Braun М. Istochniki pitaniya. Raschet i konstruirovanie (Power Sources. Calculation and Construction). Kiev: МК-Press, 2007, 288 p.
5. Rozanov Yu.К. Silovaya elektronika: evolyutsiya i primenenie (Power Electronics: Evolution and Application). М.: Znak, 2018, 136 p.
6. Dmitrikov V.F., Sergeev V.V., Samylin I.N. Povyshenie ef-fektivnosti preobrazovatel'nyh i radiotekhnicheskih ustroystv (Improving the Efficiency of Converter and Radio Engineering Devices). М.: Radio i svyaz', 2005, 424 p.
7. Shevtsov D.А. et al. Prakticheskaya silovaya elektronika – in Russ. (Practical Power Electronics), 2022, No. 1 (85), pp. 30–34.
8. Pаt. RU2779933C1. Odnotaktnyy pryamo-obratnohodovoy preobrazovatel' (Single-Stroke Forward-Reverse Converter) / D.А. Shevtsov et al., 2022.
9. Amorphous Metal Distribution Trasformers [Electron. re-source], URL: https://metglas.com/wp-content/uploads/2016/12/Me-tal_Powers_Brochure.pdf (Date of appeal 17.02.2023).
10. Starodubtsev Yu.N., Belozerov V.Ya. Magnitnye svoystva amorfnyh i nanokristallicheskih splavov (Magnetic Properties of Amorphous and Nanocrystalline Alloys). Ekaterinburg: Izd-vo Ural. un-ta, 2002, 384 p.
11. Legostaev N.S. Magnitnye elementy elektronnyh ustroystv (Mag-netic Elements of Electronic Devices). Tomsk: El' Kontent, 2014, 186 p.
12. Proizvodstvo materialov i komponentov iz amorfnyh i nanokristallicheskih splavov dlya silovoy elektroniki i priborostroeniya (Production of Materials and Components from Amorphous and Nanocrystalline Alloys for Power Electronics and Instrumentation). Ekaterinburg: NPP “Gammamet ”, 2013, 51 p.
13. GОSТ R 54073–2017. Sistemy elektrosnabzheniya samoletov i vertoletov. Obshchie trebovaniya i normy kachestva elektroenergii (Electric Power Supply Systems of Airplanes and Helicopters. General Require-ments and Norms of Power Quality). М.: Standartinform, 2018, 36 p.
14. Sorokin V.S., Antipov B.L., Lazarev N.P. Materialy i elementy elektronnoy tekhniki (Materials and Elements of Electronic Equipment): vol. 2. SPb.: Lan', 2016, 384 p.
15. Shevtsov D.А. Spravochnoe posobie po zarubezhnym IMS upravleniya impul'snymi istochnikami vtorichnogo elektropitaniya (Reference Manual on Foreign ICS for Controlling Pulsed Secondary Power Sources). М.: АО «Zvezdy i С», 1994, 195 p.
Published
2023-03-30
Section
Article