Evaluation of the Rotor Mechanical Stresses and Electromagnetic Parameters of a Permanent Magnet Electric Machine
Abstract
Electric machines with permanent magnets incorporated into the rotor have broad prospects for use in applications characterized by an increased rotational speed of the electromechanical converter. The method of placing permanent magnets on the electromechanical converter’s rotating part has an essential influence on the rotor mechanical strength and the machine’s electromagnetic performance. The article discusses ways to reduce mechanical stresses in the synchronous machine rotor with V-shaped permanent magnets. Preliminary assessment of stresses was made using a simplified analytical model. Based on the obtained results, configuration options for permanent magnets and rotor pole pieces were selected. A distribution pattern of mechanical loads on the external and internal saturation bridges was obtained using a finite element analysis, which refines and confirms the approximate analytical results. The rotor design has been optimized with respect to the criterion of achieving the minimum of maximal stresses in the saturation bridges. The angle between permanent magnets on the pole and the fillet radius at the permanent magnet to pole piece junction locations are chosen as independent parameters. The proposed solutions have been verified from the viewpoint of ensuring the required magnetic induction value in the gap, and the angular characteristics have been calculated. Based on the obtained theoretical study results, a prototype synchronous motor with a rotor containing V-shaped permanent magnets has been designed and manufactured, and its tests have been carried out.
References
2. Jang G.-H. et al. Design and Characteristic Analysis of a High-Speed Permanent Magnet Synchronous Motor Considering the Mechanical Structure for High-Speed and High-Head Centrifugal Pumps. – IEEE Transactions on Magnetics, 2018, vol. 54, No. 11, DOI:10.1109/TMAG.2018.2845874.
3. El-Refaie A.M., Osama M. High Specific Power Electrical Machines: A System Perspective. – 20th International Conference on Electrical Machines and Systems (ICEMS), 2017, DOI:10.1109/ICEMS.2017.8055931.
4. Беспалов В.Я., Коварский М.Е., Сидоров А.О. Исследование пульсаций электромагнитного момента синхронных машин с постоянными магнитами с целым и дробным значениями q. – Электричество, 2018, № 5, с. 45–51.
5. Gieras J.F., Wing M. High Power Density Brushless Motors in Permanent Magnet Motor Technology: Design and Applications, 3rd ed. Boca Raton: CRC Press, 2010, 364 p.
6. Bianchi N., Bolognani S., Luise F. Potentials and Limits of High-Speed PM Motors. – IEEE Transactions on Industry Applications, 2004, vol.40, No. 6, pp. 1570–1578, DOI:10.1109/TIA.2004.836173.
7. Dietz D., Messager G., Binder A. 1kW/60,000 min−1 Bearingless PM Motor with Combined Winding for Torque and Rotor Suspension. – IET Electric Power Applications, 2018, vol. 12, No. 8, pp.1065–1232, DOI:10.1049/iet-epa.2018.0013.
8. Jeong C.-L., Kim Y.-K., Hur J. Optimized Design of PMSM with Hybrid Type Permanent Magnet for Improving Performance and Reliability. – IEEE Transactions on Industry Applications, 2019, vol. 55, No. 5, pp. 4692–4701, DOI: 10.1109/TIA.2019.2924614.
9. Zubkov Yu.V. Mechanical Strength of the Rotor with Internal Permanent Magnets. – International Conference on Electrotechnical Complexes and Systems (ICOECS), 2021, DOI:10.1109/ICOECS 52783.2021.9657430.
10. Zubkov Yu.V., Vereshagin V.E. Designing of High-Speed Permanent Magnet Electric Machines with Rotor Strength Verification. – International Ural Conference on Electrical Power Engineering (UralCon), 2021, pp. 414–418, DOI:10.1109/UralCon 52005.2021.9559459.
11. Barcaro M., Meneghetti G., Bianchi N. Structural Analysis of the Interior PM Rotor Considering Both Static and Fatigue Loading. – IEEE Energy Conversion Congress and Exposition (ECCE), 2012, DOI: 10.1109/ECCE.2012.6342232.
12. Chaithongsuk S., Takorabet N., Rahouadj R. Design and Construction of IPM Synchronous Motorwith Magnetic and Mechanical Stress Analysis. – 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF), 2019, DOI:10.1109/ISEF45929.2019.9096897.
13. Chu G. et al. Analytical Calculation of Maximum Mechanical Stress on the Rotor of the Interior Permanent-Magnet Synchronous Machine. – IEEE Transactions on Industry Applications, 2020, vol. 56, No. 2, pp.1321–1331, DOI:10.1109/TIA.2019.2960756.
14. Rao J. et al. Investigate the Influence of Magnetic Bridge Design on Mechanical Strength and Electromagnetic Characteristics in High Speed IPM Machines. – 17th Int. Conf. on Elec. Mach. and Syst. (ICEMS), 2014, pp. 22–27, DOI:10.1109/ICEMS.2014.7013444.
15. Lee T.-G., Kim D.-J., Hong J.-P. Performance Improvement by Making Holes of Interior Permanent Magnet Synchronous Motor. – ICEMS, 2009, DOI:10.1109/ICEMS.2009.5382877.
16. Cirani M., Eriksson S., Thunberg J. Innovative Design for Flux Leakage Reduction in IPM Machines. – IEEE Transactions on Industry Applications, 2014, vol. 50, No.3, pp.1847–1853, DOI:10.1109/ICElMach.2012.6350263.
17. Смирнов А.Ю. Особенности конструирования и анализа высокооборотных синхронных машин с постоянными магнитами на роторе. – Труды НГТУ им. Р.Е. Алексеева, 2013, № 3, с. 231–235.
18. Ледовский А.Н. Электрические машины с высококоэрцитивными постоянными магнитами. М.: Энергоатомиздат, 1985, 168 с.
#
1. Balagurov V.А. Proektirovanie spetsial'nyh elektricheskih mashin peremennogo toka (Design of Special AC Electric Machines). М.: Vysshaya shkola, 1982, 272 p.
2. Jang G.-H. et al. Design and Characteristic Analysis of a High-Speed Permanent Magnet Synchronous Motor Considering the Mechanical Structure for High-Speed and High-Head Centrifugal Pumps. – IEEE Transactions on Magnetics, 2018, vol. 54, No. 11, DOI:10.1109/TMAG.2018.2845874.
3. El-Refaie A.M., Osama M. High Specific Power Electrical Machines: A System Perspective. – 20th International Conference on Electrical Machines and Systems (ICEMS), 2017, DOI:10.1109/ICEMS.2017.8055931.
4. Bespalov V.Ya., Kovarskiy M.E., Sidorov А.О. Elektrichestvo – in Russ. (Electricity), 2018, No. 5, pp. 45–51.
5. Gieras J.F., Wing M. High Power Density Brushless Motors in Permanent Magnet Motor Technology: Design and Applications, 3rd ed. Boca Raton: CRC Press, 2010, 364 p.
6. Bianchi N., Bolognani S., Luise F. Potentials and Limits of High-Speed PM Motors. – IEEE Transactions on Industry Applications, 2004, vol.40, No. 6, pp. 1570–1578, DOI:10.1109/TIA.2004.836173.
7. Dietz D., Messager G., Binder A. 1kW/60,000 min−1 Bearing-less PM Motor with Combined Winding for Torque and Rotor Suspension. – IET Electric Power Applications, 2018, vol. 12, No. 8, pp.1065–1232, DOI:10.1049/iet-epa.2018.0013.
8. Jeong C.-L., Kim Y.-K., Hur J. Optimized Design of PMSM with Hybrid Type Permanent Magnet for Improving Performance and Reliability. – IEEE Transactions on Industry Applications, 2019, vol. 55, No. 5, pp. 4692–4701, DOI: 10.1109/TIA.2019.2924614.
9. Zubkov Yu.V. Mechanical Strength of the Rotor with Internal Permanent Magnets. – International Conference on Electrotechnical Complexes and Systems (ICOECS), 2021, DOI:10.1109/ICOECS 52783.2021.9657430.
10. Zubkov Yu.V., Vereshagin V.E. Designing of High-Speed Permanent Magnet Electric Machines with Rotor Strength Verification. – International Ural Conference on Electrical Power Engineering (UralCon), 2021, pp. 414–418, DOI:10.1109/UralCon52005.2021. 9559459.
11. Barcaro M., Meneghetti G., Bianchi N. Structural Analysis of the Interior PM Rotor Considering Both Static and Fatigue Loading. – IEEE Energy Conversion Congress and Exposition (ECCE), 2012, DOI: 10.1109/ECCE.2012.6342232.
12. Chaithongsuk S., Takorabet N., Rahouadj R. Design and Construction of IPM Synchronous Motorwith Magnetic and Mechanical Stress Analysis. – 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF), 2019, DOI:10.1109/ISEF45929.2019.9096897.
13. Chu G. et al. Analytical Calculation of Maximum Mechanical Stress on the Rotor of the Interior Permanent-Magnet Synchronous Machine. – IEEE Transactions on Industry Applications, 2020, vol. 56, No. 2, pp.1321–1331, DOI:10.1109/TIA.2019.2960756.
14. Rao J. et al. Investigate the Influence of Magnetic Bridge Design on Mechanical Strength and Electromagnetic Characteristics in High Speed IPM Machines. – 17th Int. Conf. on Elec. Mach. and Syst. (ICEMS), 2014, pp. 22–27, DOI:10.1109/ICEMS.2014.7013444.
15. Lee T.-G., Kim D.-J., Hong J.-P. Performance Improvement by Making Holes of Interior Permanent Magnet Synchronous Motor. – ICEMS, 2009, DOI:10.1109/ICEMS.2009.5382877.
16. Cirani M., Eriksson S., Thunberg J. Innovative Design for Flux Leakage Reduction in IPM Machines. – IEEE Transactions on Industry Applications, 2014, vol. 50, No.3, pp.1847–1853, DOI:10.1109/ICElMach.2012.6350263.
17. Smirnov А.Yu. Trudy NGTU im. R.E. Alekseeva – in Russ. (Proceedings of the NSTU n.a. R.E. Alekseev), 2013, No. 3, pp. 231–235.
18. Ledovskiy А.N. Elektricheskie mashiny s vysokokoertsitivnymi postoyannymi magnitami (Electric Machines with High-Coercive Permanent Magnets). М.: Energoatomizdat, 1985, 168 p.