Coil Winding Circuit Configurations for Permanent Magnet Synchronous Machines

  • Aleksandr Yu. SMIRNOV
Keywords: synchronous machine, synchronous motor, coil winding, phase, pitch factor, winding factor, salient-pole stator, rotor, permanent magnets

Abstract

The article outlines a procedure for drawing up the electric circuits of coil-type armature windings for salient-pole PM electric machines proceeding from the required number of pole pairs (the synchronous rotation frequency) and the number of phases. The procedure implementation algorithm is based on determining the stator teeth number as the one nearest to the number of rotor poles (2p) multiple to the number of phases. In this way, sufficient levels of coil pitch coefficient and winding coefficient are ensured. In accordance with the developed procedure, the coils in the phases can occupy one, two, or four phase zones from the adjacent coils connected into coil groups in a series opposition manner. The algorithm was tested on a few examples of drawing up the connection circuits of synchronous machine windings known from the electrical machinery construction theory and practice, including serially produced ones with the inner stator and for a pilot design of a high-capacity motor. For the latter one, its versions with three- and nine-phase windings for a 32-pole rotor (2p = 32) are compared. Numerical studies of the motor torque for both winding circuit versions carried out using the finite element method have shown that the version with the nine-phase winding produces a 20% higher torque. For one version of a serially produced motor, the winding electric circuit design validity was checked by calculating the torque-angle curves for different current densities. In all examples, formal compliance with the items of the outlined procedure has yielded correct circuit solutions. A criterion for evaluating the PM machine manufacturing complexity has been proposed, which depends on the winding type (distributed or coil-type) and on the number of PMs per magnetic system pole.

Author Biography

Aleksandr Yu. SMIRNOV

(JSC "Afrikantov OKBM"; Nizhny Novgorod State Technical University n. a. R.E. Alekseev, Nizhniy Novgorod, Russia) – Leading Design Engineer; Professor of the Theoretical and General Electrical Engineering Dept, Dr. Sci. (Eng.), Docent.

References

1. Иванов-Смоленский А.В. Электрические машины. М.: Энергия, 1980, 928 c.
2. Lipo T.A. Introduction to AC Machine Design. John Wiley &Sons, 2017, 544 p.
3. Zhu Z.Q., Chen J.T. Advanced Flux-Switching Permanent Magnet Brushless Machines. – IEEE Transactions on Industry Magnetics, 2010, vol. 46 (6), pp. 1447–1453, DOI: 10.1109/TMAG.2010.2044481.
4. Смирнов А.Ю. Электропривод с бесконтактными синхронными двигателями. М.: Инфра-М, 2021, 200 с.
5. Смирнов А.Ю. Индукторные машины. Проектирование и вычислительный анализ. М.: Форум, 2015, 192 с.
6. Жерве Г.К. Обмотки электрических машин. Л.: Энергоатомиздат, 1989, 400 с.
7. Pyrhönen J., Jokinen T., Hrabovcová V. Design of Rotating Electrical Machines. John Wiley and Sons, 2008, 538 p.
8. Li Y, Mi C.C. Doubly Salient Permanent-Magnet Machine with Skewed Rotor and Six-State Commutating Mode. – IEEE Transions on Magnetics. 2007, vol. 43(9), pp. 3623–3629, DOI:10.1109/TMAG.2007.901949.
9. Hanselman D.C. Brushless Permanent-Magnet Motor Design. New York: McGraw Hill, 1994, 191 p.
10. Miller T.J.E. Optimal Design of Switched Reluctance Motors. – IEEE Transactions on Industrial Electronics, 2002, vol. 49(1), pp. 15–27, DOI: 10.1109/41.982244.
11. Gieras J.C. Permanent Magnet Motor Technology: Design and Applications. 3rd Ed. New York: CRC Press, 2010, 608 p.
12. Дискретный электропривод с шаговыми двигателями /под ред. М.Г. Чиликина. М.: Энергия, 1971, 624 с.
13. Silvester P.P., Ferrari R.L. Finite Elements for Electrical Engineers. Cambridge: Cambridge University Press, 1996, 494 p.
14. Alberti L. et al. Finite-Element Analysis of Electrical Machines for Sensorless Drives with High-Frequency Signal Injection. – IEEE Transactions on Industry Applications, 2014, vol. 50, No 3, pp. 1871–1879, DOI:10.1109/TIA.2013.2285957.
15. Pat. US6888280B2. High Performance Brushless Motor and Drive for an Electrical Vehicle Motorization / J.-Y. Dubé, J. Cros, P. Viarouge, 2005.
16. Смирнов А.Ю. Проектирование высокооборотных генераторов большой мощности с постоянными магнитами на роторе. – Электричество, 2017, № 11, с. 40–45.
#
1. Ivanov-Smolenskiy A.V. Elektricheskie mashiny (Electric Machines). М.: Energiya, 1980, 928 p.
2. Lipo T.A. Introduction to AC Machine Design. John Wiley &Sons, 2017, 544 p.
3. Zhu Z.Q., Chen J.T. Advanced Flux-Switching Permanent Magnet Brushless Machines. – IEEE Transactions on Industry Magnetics, 2010, vol. 46 (6), pp. 1447–1453, DOI: 10.1109/TMAG. 2010.2044481.
4. Smirnov A.Yu. Elektroprivod s beskontaktnymi sinhronnymi dvigatelyami (Electric Drive with Contactless Synchronous Motors). М.: Infra-M, 2021, 200 p.
5. Smirnov A.Yu. Induktornye mashiny. Proektirovanie i vychis-litel'nyy analiz (Inductor Machines. Design and Computational Analysis). М.: Forum, 2015, 192 p.
6. Zherve G.К. Obmotki elektricheskih mashin (Windings of Elect-ric Machines). L.: Energoatomizdat, 1989, 400 p.
7. Pyrhönen J., Jokinen T., Hrabovcová V. Design of Rotating Electrical Machines. John Wiley and Sons, 2008, 538 p.
8. Li Y, Mi C.C. Doubly Salient Permanent-Magnet Machine with Skewed Rotor and Six-State Commutating Mode. – IEEE Transions on Magnetics. 2007, vol. 43(9), pp. 3623–3629, DOI:10.1109/TMAG.2007.901949.
9. Hanselman D.C. Brushless Permanent-Magnet Motor Design. New York: McGraw Hill, 1994, 191 p.
10. Miller T.J.E. Optimal Design of Switched Reluctance Motors. – IEEE Transactions on Industrial Electronics, 2002, vol. 49(1), pp. 15–27, DOI: 10.1109/41.982244.
11. Gieras J.C. Permanent Magnet Motor Technology: Design and Applications. 3rd Ed. New York: CRC Press, 2010, 608 p.
12. Diskretnyy elektroprivod s shagovymi dvigatelyami (Discrete Electric Drive with Stepper Motors) / Ed. by M.G. Chilikin. М.: Energiya, 1971, 624 p.
13. Silvester P.P., Ferrari R.L. Finite Elements for Electrical Engineers. Cambridge: Cambridge University Press, 1996, 494 p.
14. Alberti L. et al. Finite-Element Analysis of Electrical Ma-chines for Sensorless Drives with High-Frequency Signal Injection. – IEEE Transactions on Industry Applications, 2014, vol. 50, No 3, pp. 1871–1879, DOI:10.1109/TIA.2013.2285957.
15. Pat. US6888280B2. High Performance Brushless Motor and Drive for an Electrical Vehicle Motorization / J.-Y. Dubé, J. Cros, P. Viarouge, 2005.
16. Smirnov A.Yu. Elektrichestvo – in Russ. (Electricity), 2017, No. 11, pp. 40–45.
Published
2023-04-27
Section
Article