Lightning Discharge as a Self-Organizing Transport Network. Part 1. The Concept of an Asymmetric Discharge Tree

  • Dmitriy I. IUDIN
  • Nikolay V. KOROVKIN
  • Artem A. SYSSOEV
  • Masato HAYAKAWA
Keywords: polarity asymmetry, lightning leader, leader channel sheath of charge, Horton–Strahler number, reversing point

Abstract

Lightning is a self-developing transport system of plasma channels demonstrating the ability to self-regulation due to self-consistent maintenance of zero total charge of the entire branched discharge network. The lightning structural evolution is accompanied by significant morphological changes: new plasma channels appear, and some of old ones disappear. The accomplished work was in general aimed at studying intracloud lightning and cloud-to-ground discharges up to the moment the latter come in contact with the ground. It has been shown, as part of the study, that the ability of lightning, as an open system, to maintain its structural “homeostasis” is closely linked with macroscale asymmetry: the lightning morphological and transport properties are caused by loss of electric discharge tree structural symmetry when the discharge polarity changes for the opposite. Indeed, the asymmetry of electric field threshold strength levels needed to support the growth of positive and negative streamers leads to pronounced macroscale effects in the physics of lightning. Ground discharges of negative polarity consist most often of a series of strokes passing through the same channel, while positive flashes are as a rule limited to a single stroke. Negative and positive lightning leaders have significant morphological differences: the growth of positive leaders is accompanied by development of negative recoil leaders, whereas no one has observed positive recoil leaders, if they exist at all. The results of the study are presented in two parts. This article contains an introductory part that sets out the narration general context, and, by analogy with the hierarchical Horton-Strahler scheme used for river systems, analyzes the asymmetry of the spatial distribution of capacitance in different parts of the lightning discharge tree. The concept of a point of zero induced charge or a reversing point is discussed.

Author Biographies

Dmitriy I. IUDIN

(Privolzhsky Research Medical University; the Institute of Applied Physics of RAS, Nizhny Novgorod, Russia) – Head of the Medical Biophysics Dept.; Leading Researcher, Dr. Sci. (Phys.-Math.), Dr. Sci. (Biolog.).

Nikolay V. KOROVKIN

(Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia) – Professor of the Higher School of High-Voltage Energy, Dr. Sci. (Eng.).

Artem A. SYSSOEV

(Privolzhsky Research Medical University; the Institute of Applied Physics of RAS, Nizhny Novgorod, Russia) – Senior Teacher of the Medical Biophysics dept.; Junior Researcher, Cand. Sci. (Phys.-Math.).

Masato HAYAKAWA

(The University of Electro-Communications, Chofu, Tokyo, Japan) – Emeritus Professor Emeritus of the University of Electro-Communications, Dr. Sci. (Eng.).

References

1. Kasemir H.W. A Contribution to the Electrostatic Theory of a Lightning Discharge. – Journal of Geophysical Research, 1960, vol. 65, pp. 1873–1878.
2. Williams E.R., Heckman S. Polarity Asymmetry in Lightning Leaders: The Evolution of Ideas on Lightning Behavior from Strikes to Aircraft. – Journal AerospaceLab, 2012, vol. 5, pp. 1–8.
3. Mazur V., Ruhnke L.H. Common Physical Processes in Natural and Artificially Triggered Lightning. – Journal of Geophysical Research, 1993, vol. 98, pp. 12913–12930, DOI:10.1029/93JD00626.
4. Mazur V., Ruhnke L.H. Model of Electric Charges in Thunderstorms and Associated Lightning. – Journal of Geophysical Research, 1998, vol. 103(D18), pp. 23,299–23,308, DOI: 10.1029/98JD02120.
5. Базелян Э.М., Райзер Ю.П. Физика молнии и молниезащиты. М.: Физматлит, 2001, 320 с.
6. Mazur V., Ruhnke L.H. The Physical Processes of Current Cut-off in Lightning Leaders. – Journal of Geophysical Research: Atmospheres, 2014, vol. 119, pp. 2796–2810, DOI: 10.1002/2013JD020494.
7. Mazur V. Physical Processes during Development of Lightning Flashes. – Comptes Rendus Physique, 2002, vol. 3(10), pp. 1393–1409, DOI: 10.1016/S1631-0705(02)01412-3.
8. Iudin D.I. et al. Advanced Numerical Model of Lightning Development: Application to Studying the Role of LPCR in Determining Lightning Type. – Journal of Geophysical Research: Atmospheres, 2017, vol. 122(12), pp. 6416–6430, DOI: 10.1002/2016jd026261.
9. Williams E.R. Problems in Lightning Physics – The role of polarity asymmetry. – Plasma Sources Science and Technology, 2006, vol. 15, pp. S91–S108, DOI: 10.1088/ 0963-0252/15/2/S12.
10. Rakov V.A., Uman M.A. Lightning: Physics and Effects. New York: Cambridge University Press, 2003, 687 p.
11. Malagon-Romero A., Luque A. Spontaneous Emergence of Space Stems Ahead of Negative Leaders in Lightning and Long Sparks. – Geophysical Research Letters, 2019, vol. 46(7), pp. 4029–4038, DOI: 10.1029/2019GL082063.
12. Syssoev A.A., Iudin D.I. On a Possible Mechanism of Space Stem Formation at the Negative Corona Streamer Burst Periphery. – Atmospheric Research, 2021, vol. 259, DOI: 10.1016/j.atmosres.2021.105685.
13. Syssoev A.A. et al. Numerical Simulation of Stepping and Branching Processes in Negative Lightning Leaders. – Journal of Geophysical Research: Atmospheres, 2021, vol. 125, DOI: 10. 1029/ 2019JD031360.
14. Dwyer J.R., Uman M.A. The Physics of Lightning. – Physics Reports, 2014, vol. 534(4), pp. 147–241, DOI:10.1016/j.physrep.2013.09.004.
15. Williams E., Heckman S. Polarity Asymmetry in Lightning Leader Speeds: Implications for Current Cutoff and Multiple Strokes in Cloud-to-Ground Flashes. – Proc. 3rd International Symposium on Winter Lightning, Sapporo, Japan, 2011, pp.125–128,
16. Van der Velde O.A., Montanya J. Asymmetries in Bidirectional Leader Development of Lightning Flashes. – Journal of Geophysical Research: Atmospheres, 2013, vol. 118(24), pp. 13504–13519, DOI: 10.1002/2013JD020257.
17. Saba M.M.F. et al. Positive Leader Characteristics from High-Speed Video Observations. – Geophysical Research Letters, 2008, vol. 35, DOI:10.1029/2007GL033000.
18. Mazur V., Ruhnke L.H. On the Mechanism of Current Cutoff in Lightning Flashes. – 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria, 2012, DOI: 10.1109/ICLP.2012.6344281.
19. Krehbiel P.R., Brook M., McCrory R. An Analysis of the Charge Structure of Lightning Discharges to the Ground. – Journal of Geophysical Research, 1979, vol. 84, pp. 2432–56.
20. Heckman S.J. Why Does a Lightning Flash have Multiple Strokes? Ph.D. Thesis. Massachusetts Institute of Technology, 1992.
21. Warner T.A., Cummins K.L., Orville R.E. Upward Lightning Observations from Towers in Rapid City, South Dakota and Comparison with National Lightning Detection Network Data, 2004–2010. – Journal of Geophysical Research, 2012, vol. 117, p. D19109, DOI:10.1029/2012JD018346.
22. Iudin D. I. Lightning as an Asymmetric Branching Network. – Atmospheric Research, 2021, vol. 256, pp. 1–12, DOI:10.1016/j.atmosres.2021.105560.
23. Simpson G.C. The Mechanism of a Thunderstorm. – Proceedings of the Royal Society of London A, 1927, vol. 114, pp. 376–401.
24. Loeb L.B. The Positive Streamer in Air in Relation to the Lightning Stroke. – Atmospheric Explorations, ed. Houghton H.G. (Cambridge, MA/New York: MIT Press/Wiley), 1958, pp. 46–75.
25. Ogawa T., Brook M. The Mechanism of the Intracloud Lightning Discharge. – Journal of Geophysical Research, 1964, vol. 69, pp. 5141–5150.
26. Иудин Д.И., Сысоев А.А., Раков В.А. Инициация молнии как следствие естественной эволюции грозового облака. Ч. 1. Роль отлипания в снижении критической разрядной напряжённости воздуха. – Электричество, 2022, № 11, с. 13–28.
27. Иудин Д.И., Сысоев А.А., Раков В.А. Инициация молнии как следствие естественной эволюции грозового облака. Ч. 2. Достримерный этап. – Электричество, 2022, № 12, с. 13–22.
28. Иудин Д.И., Сысоев А.А., Раков В.А. Инициация молнии как следствие естественной эволюции грозового облака. Ч. 3. Стримеры и стримерно-лидерный переход – Электричество, 2023, № 1, с. 16–27.
29. Horton R.E. Erosional Development of Streams and Their Drainage Basins: Hydrophysical Approach to Quantitative Morphology. – Geological Society of America Bulletin, 1945, vol. 56(3), pp. 275–370, DOI:10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.
30. Strahler A.N. Hypsometric (Area-Altitude) Analysis of Erosional Topography. – Geological Society of America Bulletin, 1952, vol. 63, pp. 1117–1142.
31. Strahler A.N. Quantitative Analysis of Watershed Geomorphology. – Eos, Transactions American Geophysical Union, 1957, vol. 38, pp. 913–920.
32. Qi Q. et al. High-Speed Video Observations of the Fine Structure of a Natural Negative Stepped Leader at Close Distance. – Atmospheric Research, 2016, vol. 178–179, pp. 260–267, DOI: 10.1016/j.atmosres.2016.03.027.
33. Hill J.D. et al. Correlated Lightning Mapping Array and Radar Observations of the Initial Stages of Three Sequentially Triggered Florida Lightning Discharges. – Journal of Geophysical Research: Atmospheres, 2013, vol. 118, pp. 8460–8481, DOI:10.1002/jgrd.50660.
34. Hare B.M. et al. Needle-Like Structures Discovered on Positively Charged Lightning Branches. –Nature, 2019, vol. 568, pp. 360–363, DOI:10.1038/s41586-019-1086-6.
35. Иоссель Ю.Я., Кочанов Э.С., Струнский М.Г. Расчет электрической емкости. Л.: Энергоиздат. 1981, 288 с.
---
Работа выполнена при поддержке Российского научного фонда (проект № 23-11-00245).
#
1. Kasemir H.W. A Contribution to the Electrostatic Theory of a Lightning Discharge. – Journal of Geophysical Research, 1960, vol. 65, pp. 1873–1878.
2. Williams E.R., Heckman S. Polarity Asymmetry in Lightning Leaders: The Evolution of Ideas on Lightning Behavior from Strikes to Aircraft. – Journal AerospaceLab, 2012, vol. 5, pp. 1–8.
3. Mazur V., Ruhnke L.H. Common Physical Processes in Natural and Artificially Triggered Lightning. – Journal of Geophysical Research, 1993, vol. 98, pp. 12913–12930, DOI:10.1029/93JD00626.
4. Mazur V., Ruhnke L.H. Model of Electric Charges in Thunderstorms and Associated Lightning. – Journal of Geophysical Research, 1998, vol. 103(D18), pp. 23,299–23,308, DOI: 10.1029/98JD02120.
5. Bazelyan E.M., Rayzer Yu.P. Fizika molnii i molniezashchity (Physics of Lightning and Lightning Protection). М.: Fizmatlit, 2001, 320 p.
6. Mazur V., Ruhnke L.H. The Physical Processes of Current Cut-off in Lightning Leaders. – Journal of Geophysical Research: Atmospheres, 2014, vol. 119, pp. 2796–2810, DOI: 10.1002/2013JD0-20494.
7. Mazur V. Physical Processes during Development of Lightning Flashes. – Comptes Rendus Physique, 2002, vol. 3(10), pp. 1393–1409, DOI: 10.1016/S1631-0705(02)01412-3.
8. Iudin D.I. et al. Advanced Numerical Model of Lightning Development: Application to Studying the Role of LPCR in Determining Lightning Type. – Journal of Geophysical Research: Atmospheres, 2017, vol. 122(12), pp. 6416–6430, DOI: 10.1002/2016jd026261.
9. Williams E.R. Problems in Lightning Physics – The role of polarity asymmetry. – Plasma Sources Science and Technology, 2006, vol. 15, pp. S91–S108, DOI: 10.1088/ 0963-0252/15/2/S12.
10. Rakov V.A., Uman M.A. Lightning: Physics and Effects. New York: Cambridge University Press, 2003, 687 p.
11. Malagon-Romero A., Luque A. Spontaneous Emergence of Space Stems Ahead of Negative Leaders in Lightning and Long Sparks. – Geophysical Research Letters, 2019, vol. 46(7), pp. 4029–4038, DOI: 10.1029/2019GL082063.
12. Syssoev A.A., Iudin D.I. On a Possible Mechanism of Space Stem Formation at the Negative Corona Streamer Burst Periphery. – Atmospheric Research, 2021, vol. 259, DOI: 10.1016/j.atmosres.2021.105685.
13. Syssoev A.A. et al. Numerical Simulation of Stepping and Branching Processes in Negative Lightning Leaders. – Journal of Geophysical Research: Atmospheres, 2021, vol. 125, DOI: 10. 1029/2019JD031360.
14. Dwyer J.R., Uman M.A. The Physics of Lightning. – Physics Reports, 2014, vol. 534(4), pp. 147–241, DOI:10.1016/j.phy-srep.2013.09.004.
15. Williams E., Heckman S. Polarity Asymmetry in Lightning Leader Speeds: Implications for Current Cutoff and Multiple Strokes in Cloud-to-Ground Flashes. – Proc. 3rd International Symposium on Winter Lightning, Sapporo, Japan, 2011, pp.125–128,
16. Van der Velde O.A., Montanya J. Asymmetries in Bidirectional Leader Development of Lightning Flashes. – Journal of Geophysical Research: Atmospheres, 2013, vol. 118(24), pp. 13504–13519, DOI: 10.1002/2013JD020257.
17. Saba M.M.F. et al. Positive Leader Characteristics from High-Speed Video Observations. – Geophysical Research Letters, 2008, vol. 35, DOI:10.1029/2007GL033000.
18. Mazur V., Ruhnke L.H. On the Mechanism of Current Cutoff in Lightning Flashes. – 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria, 2012, DOI: 10.1109/ICLP.2012.6344281.
19. Krehbiel P.R., Brook M., McCrory R. An Analysis of the Charge Structure of Lightning Discharges to the Ground. – Journal of Geophysical Research, 1979, vol. 84, pp. 2432–56.
20. Heckman S.J. Why Does a Lightning Flash have Multiple Strokes? Ph.D. Thesis. Massachusetts Institute of Technology, 1992.
21. Warner T.A., Cummins K.L., Orville R.E. Upward Lightning Observations from Towers in Rapid City, South Dakota and Comparison with National Lightning Detection Network Data, 2004–2010. – Journal of Geophysical Research, 2012, vol. 117, p. D19109, DOI:10.1029/2012JD018346.
22. Iudin D. I. Lightning as an Asymmetric Branching Network. – Atmospheric Research, 2021, vol. 256, pp. 1–12, DOI:10.1016/j.atmosres.2021.105560.
23. Simpson G.C. The Mechanism of a Thunderstorm. – Proceedings of the Royal Society of London A, 1927, vol. 114, pp. 376–401.
24. Loeb L.B. The Positive Streamer in Air in Relation to the Lightning Stroke. – Atmospheric Explorations, ed. Houghton H.G. (Cambridge, MA/New York: MIT Press/Wiley), 1958, pp. 46–75.
25. Ogawa T., Brook M. The Mechanism of the Intracloud Lightning Discharge. – Journal of Geophysical Research, 1964, vol. 69, pp. 5141–5150.
26. Iudin D.I., Syssoev A.A., Rakov V.A. Elektrichestvo – in Russ. (Electricity), 2022, No. 11, pp. 13–28.
27. Iudin D.I., Syssoev A.A., Rakov V.A. Elektrichestvo – in Russ. (Electricity), 2022, No. 12, pp. 13–22.
28. Iudin D.I., Syssoev A.A., Rakov V.A. Elektrichestvo – in Russ. (Electricity), 2023, No. 1, pp. 16–27.
29. Horton R.E. Erosional Development of Streams and Their Drainage Basins: Hydrophysical Approach to Quantitative Morphology. – Geological Society of America Bulletin, 1945, vol. 56(3), pp. 275–370, DOI:10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.
30. Strahler A.N. Hypsometric (Area-Altitude) Analysis of Erosional Topography. – Geological Society of America Bulletin, 1952, vol. 63, pp. 1117–1142.
31. Strahler A.N. Quantitative Analysis of Watershed Geomorphology. – Eos, Transactions American Geophysical Union, 1957, vol. 38, pp. 913–920.
32. Qi Q. et al. High-Speed Video Observations of the Fine Structure of a Natural Negative Stepped Leader at Close Distance. – Atmospheric Research, 2016, vol. 178–179, pp. 260–267, DOI: 10.1016/j.atmosres.2016.03.027.
33. Hill J.D. et al. Correlated Lightning Mapping Array and Radar Observations of the Initial Stages of Three Sequentially Triggered Florida Lightning Discharges. – Journal of Geophysical Research: Atmospheres, 2013, vol. 118, pp. 8460–8481, DOI:10.1002/jgrd.50660.
34. Hare B.M. et al. Needle-Like Structures Discovered on Positively Charged Lightning Branches. –Nature, 2019, vol. 568, pp. 360–363, DOI:10.1038/s41586-019-1086-6.
35. Iossel’ Yu.Ya., Kochanov E.S., Strunskiy M.G. Raschet elektricheskoy yemkosti (Calculation of Electrical Capacitance). L.: Energoizdat, 1981, 288 p.
---
The work was supported by the Russian Science Foundation (Project No. 23-11-00245).
Published
2023-05-25
Section
Article