Studying the Frequency Characteristics of Inductive Sensors Used in Partial Discharge Measurement Circuits

  • Anton V. ZHUYKOV
  • Polina A. KOLPAKOVA
  • Daniil A. MATVEEV
  • Mihail V. FROLOV
  • Sergey I. HRENOV
Keywords: partial discharges, inductive sensors, high-voltage testing, frequency responses, electrical method of measurements

Abstract

The results obtained from measuring the characteristics of partial discharges (PD) inside of electrical equipment insulation using the electrical method should be analyzed with taking into account the frequency responses of both the test facility and measurement circuit components, especially the sensors that produce the response to PD signals. The article sets out methodical principles of the approach to determining these frequency responses, which minimizes the measurement errors. The frequency responses of inductive sensors of two kinds – based on the principles of current and voltage transformer – are given and analyzed, which opens the possibility to design sensors for particular measurement objectives. For sensors based on the current transformer principle it is shown that the decreasing pattern of the phase-frequency response limits their operation frequency range. For sensors based on the voltage transformer principle the influence of the type of ferrite core and the measuring device input impedance on the frequency responses is analyzed. It is shown that by selecting the core material it is possible to control the response duration and provide separate recording of frequently repeating discharges. The condition for ensuring an oscillatory pattern of the response from an inductive sensor connected to the measuring device low-impedance input is determined. Recommendations on the sensors design to reduce distortion and attenuation of signals are given.

Author Biographies

Anton V. ZHUYKOV

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Engineer of the High Voltage Engineering and Electrophysics Dept., Cand. Sci. (Eng.)

Polina A. KOLPAKOVA

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Engineer of the High Voltage Engineering and Electrophysics Dept

Daniil A. MATVEEV

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Researcher of the High Voltage Engineering and Electrophysics Dept.

Mihail V. FROLOV

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Postgraduate Student, Engineer of the High Voltage Engineering and Electrophysics Dept.

Sergey I. HRENOV

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Docent of the High Voltage Engineering and Electrophysics Dept., Cand. Sci. (Eng.), Docent

References

1. Коробейников С.М., Овсянников А.Г. Физические механизмы частичных разрядов. Новосибирск: НГТУ, 2021, 266 с.
2. Вдовико В.П. Частичные разряды в диагностировании высоковольтного оборудования. Новосибирск: Наука, 2007, 155 с.
3. Русов В.А. Измерение частичных разрядов в изоляции высоковольтного оборудования. Екатеринбург: УрГУПС, 2011, 370 с.
4. CIGRE Technical Brochure No. 366. Guide for Partial Discharge Measurements in Compliance to IEC 60270, 2008, 56 p.
5. CIGRE Technical Brochure No. 662. Guidelines for Partial Discharge Detection Using Conventional (IEC 60270) and Unconventional Methods, 2016, 115 p.
6. CIGRE Technical Brochure No. 676. Partial Discharges in Transformers, 2017, 162 p.
7. IEC 60270:2000+AMD1:2015 CSV. High-Voltage Test Techniques – Partial Discharge Measurements, 2015, 226 p.
8. ГОСТ Р 55191-2012 (МЭК 60270:2000). Методы испытаний высоким напряжением. Измерения частичных разрядов. М.: Стандартинформ, 2014, 47 c.
9. Qiong F. et al. New Type of Pulse Current Sensors for on-Line Partial Discharge Monitoring. – 7th International Conference on Properties and Applications of Dielectric Materials, 2003, pp. 298–301, DOI: 10.1109/ICPADM.2003.1218411.
10. Siddiqui B.A., Pakonen P., Verho P. Novel Sensor Solutions for On-line PD Monitoring. – 23rd International Conference on Electricity Distribution, Lyon, France, 2015, p. 1200.
11. Siddiqui B.A., Pakonen P., Verho P. Novel Inductive Sensor Solutions for On-line Partial Discharge and Power Quality Monitoring. – IEEE Transactions on Instrumentation and Measurement, 2017, vol. 70, No. 1, pp. 209–216, DOI: 10.1109/TDEI.2016.005908.
12. Paophan B., Kunakorn A., Yutthagowith P. Partial Discharge Measurement Based on an Inductive Mode Air Core Sensor. – Journal of Electrical Engineering & Technology, 2020, vol. 15, pp. 773–785, DOI: 10.1007/s42835-020-00376-y.
13. Klüss J.V., Elg A.P., Wingqvist C. High-Frequency Current Transformer Design and Implementation Considerations for Wideband Partial Discharge Applications. – IEEE Transactions on Instrumentation and Measurement, 2021, vol. 70, DOI: 10.1109/TIM.2021.3052002.
14. Fritsch M., Wolter M. High-Frequency Current Transformer Design and Construction Guide. – IEEE Transactions on Instrumentation and Measurement, 2022, vol. 71, DOI: 10.1109/TIM.2022.3177189.
15. Qian S. et al. BaTiO3-Refined NiCuZn Ferrites Towards Enhanced Pulse Detection Sensitivity for a High-Frequency Current Transformer. – Journal of Electronic Materials, 2023, vol. 52, iss. 1, pp. 583–592, DOI: 10.1007/s11664-022-10029-7.
---
Исследование выполнено за счет гранта Российского научного фонда № 23-29-00934, https://rscf.ru/project/23-29-00934
#
1. Korobeynikov S.M., Ovsyannikov A.G. Fizicheskie mekhanizmy chastichnyh razryadov (Physical Mechanisms of Partial Discharges). Novosibirsk: NGTU, 2021, 266 p.
2. Vdoviko V.P. Chastichnye razryady v diagnostirovanii vysokovol'tnogo oborudovaniya (Partial Discharges in the Diagnosis of High-Voltage Equipment). Novosibirsk: Nauka, 2007, 155 p.
3. Rusov V.А. Izmerenie chastichnyh razryadov v izolyatsii vysokovol'tnogo oborudovaniya (Measurement of Partial Discharges in the Insulation of High-Voltage Equipment). Ekaterinburg: UrGUPS, 2011, 370 p.
4. CIGRE Technical Brochure No. 366. Guide for Partial Discharge Measurements in Compliance to IEC 60270, 2008, 56 p.
5. CIGRE Technical Brochure No. 662. Guidelines for Partial Dis-charge Detection Using Conventional (IEC 60270) and Unconventional Methods, 2016, 115 p.
6. CIGRE Technical Brochure No. 676. Partial Discharges in Transformers, 2017, 162 p.
7. IEC 60270:2000+AMD1:2015 CSV. High-Voltage Test Techniques – Partial Discharge Measurements, 2015, 226 p.
8. GОSТ R 55191-2012 (МEК 60270:2000). Metody ispytaniy vysokim napryazheniem. Izmereniya chastichnyh razryadov (High Voltage Test Techniques. Partial Discharge Measurements). М.: Standartinform, 2014, 47 p.
9. Qiong F. et al. New Type of Pulse Current Sensors for on-Line Partial Discharge Monitoring. – 7th International Conference on Properties and Applications of Dielectric Materials, 2003, pp. 298–301, DOI: 10.1109/ICPADM.2003.1218411.
10. Siddiqui B.A., Pakonen P., Verho P. Novel Sensor Solutions for On-line PD Monitoring. – 23rd International Conference on Electricity Distribution, Lyon, France, 2015, p. 1200.
11. Siddiqui B.A., Pakonen P., Verho P. Novel Inductive Sensor Solutions for On-line Partial Discharge and Power Quality Monito-ring. – IEEE Transactions on Instrumentation and Measurement, 2017, vol. 70, No. 1, pp. 209–216, DOI: 10.1109/TDEI.2016.005908.
12. Paophan B., Kunakorn A., Yutthagowith P. Partial Discharge Measurement Based on an Inductive Mode Air Core Sensor. – Journal of Electrical Engineering & Technology, 2020, vol. 15, pp. 773–785, DOI: 10.1007/s42835-020-00376-y.
13. Klüss J.V., Elg A.P., Wingqvist C. High-Frequency Current Transformer Design and Implementation Considerations for Wideband Partial Discharge Applications. – IEEE Transactions on Instrumentation and Measurement, 2021, vol. 70, DOI: 10.1109/TIM.2021.3052002.
14. Fritsch M., Wolter M. High-Frequency Current Transformer Design and Construction Guide. – IEEE Transactions on Instrumentation and Measurement, 2022, vol. 71, DOI: 10.1109/TIM.2022.3177189.
15. Qian S. et al. BaTiO3-Refined NiCuZn Ferrites Towards Enhanced Pulse Detection Sensitivity for a High-Frequency Current Transformer. – Journal of Electronic Materials, 2023, vol. 52, iss. 1, pp. 583–592, DOI: 10.1007/s11664-022-10029-7
---
The study was financially supported by the Russian Science Foundation, grant no. 23-29-00934, https://rscf.ru/project/23-29-00934
Published
2023-05-25
Section
Article