The Use of Radar Absorbing Materials to Reduce Crosstalk in the Aircraft Electrical System Circuits

  • Vladimir Yu. KIRILLOV
  • Andrey A. TORLUPA
  • Maxim M. TOMILIN
Keywords: aircraft, crosstalk, radar absorbing material, electrotechnical complex

Abstract

High-frequency electromagnetic interference is induced in the electrical circuits of aircraft electrical systems under the influence of external electromagnetic fields penetrating into the aircraft structure through the aircraft body’s radio-transparent parts. High-frequency interference propagates in the electrical system circuits through cross capacitive and inductive links, as well as due to electromagnetic field radiation by the conductors of electrical bundle communication lines. To weaken cross links and, accordingly, to reduce the crosstalk level, the communication lines in electrical bundles are shielded with braid or solid screens. The crosstalk can be weakened and its propagation paths in the communication lines of electric bundles and the circuits of on-board electrical system’s instruments and devices can be eliminated, apart from shielding, by using radar absorbing materials. The placement of radar absorbing materials in close proximity to the communication line conductors makes it possible to attenuate crosstalk by absorbing the energy of the electromagnetic fields they produce. By using the experimental study results presented in the article it is possible to evaluate the effectiveness of crosstalk attenuation in the frequency band 10–3000 MHz by using a radar absorbing material. The use of radar absorbing material makes it possible to achieve a reduction in the crosstalk voltage between the communication lines in the electrical bundle by 20–30 dBμV.

Author Biographies

Vladimir Yu. KIRILLOV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Head of the Theoretical Electrical Engineering Dept., Dr. Sci. (Eng.), Professor.

Andrey A. TORLUPA

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Postgraduate Student of the Theoretical Electrical Engineering Dept.

Maxim M. TOMILIN

(Moscow Aviation Institute (National Research University), Moscow, Russia) Docent of the Theoretical Electrical Engineering Dept., Cand. Sci. (Eng.).

References

1. Ott H.W. Electromagnetic Compatibility Engineering. John Wiley & Sons, Inc., 2009, 843 p.
2. Барнс Дж. Электронное конструирование: Методы борьбы с помехами. М.: Мир, 1990, 238 с.
3. Нгуен В.Т., Кириллов В.Ю. Перекрестные помехи в электрических соединителях. – Электричество, 2021, № 3, с. 54–59.
4. Гетманец А.Н. и др. Передача наведенных электромагнитными полями токов и напряжений по цепям связи. – Технологии электромагнитной совместимости, 2020, № 3(74), с. 3–24.
5. Noise, Сross-talk, Jitter, Skew and EMI. Section 6. Backplane Designer’s guide. Fairchild Semiconductor Corporation MS500736, 2002, 11 p.
6. Кечиев Л.Н. Печатные платы и узлы гигабитной электроники. М.: Грифон, 2017, 423 с.
7. Гизатуллин З.М., Чермошенцев С.Ф. Моделирование электромагнитных помех в неэкранированной витой паре при внешнем гармоническом электромагнитном воздействии. – Информационные технологии, 2010, № 6, с. 2–7.
8. Hill D.A., Cavcey K.H., Johnk R.T. Cross-Talk Between Microstrip Transmission Lines. – IEEE Transactions on EMC, 1994, vol. 36, No. 4, pp. 314–321, DOI:10.1109/15.328861.
9. Brooks D. Signal Integrity Issues and Printed Circuit Board Design. Prentice Hall PTR, 2003, 432 p.
10. Нгуен В.Т., Кириллов В.Ю. Перекрестные помехи во внутреннем пространстве бортового приборного модуля. – Известия Тульского государственного университета. Технические науки, 2021, № 2, с. 563–568.
11. Кечиев Л.Н. Экранирование радиоэлектронной аппаратуры. Инженерное пособие. М.: Грифон, 2019, 722 с.
12. Ковалева Т.Ю. и др. Радиопоглощающие материалы для покрытия электронных средств спецтехники. – 27 междунар. конф. “Электромагнитное поле и материалы. Фундаментальные физические исследования”, 2015, с. 431–436.
13. Tamminen A. et al. Transmittance and Monostatic Reflectivity of Radar Absorbing Materials for CATR. – The 2nd European Conf. on Antennas and Propagation, 2007, DOI:10.1049/ic.2007.1561.
14. Gevorkyan A.V., Privalova T. Yu. The Radiation Characteristics of 3.43: 1 Bandwidth Dipole Antenna with Radar Absorbing Material. – IEEE Radio and Antenna Days of the Indian Ocean, 2018,DOI:10.23919/RADIO.2018.8572346
15. Anyutin N.V., Titarenko A.V., Elizarov S.V. Justification of the Conditions of Reproducible Measured Characteristics of Radio Absorbing Materials in Free Space. – Radiation and Scattering of Electromagnetic Waves 2017, DOI:10.1109/RSEMW.2017.8103597.
16. Zhang Ch. et al. Application of radar absorbing material in design of metal space frame radomes. – Cross Strait Quad-Regional Radio Science and Wireless Technology Conf., 2011, DOI:10.1109/CSQRWC.2011.6036926.
17. Каликинцева Д.А. и др. Радиопоглощающие экранирующие характеристики композитов на основе магнитного и электропроводящего материалов. – 18 международная конференция “Электромагнитное поле и материалы (фундаментальные физические исследования)”, 2021, с.313–322.
18. Budai A.G. et al. Influence of Gratings Made from Conducting Wire Elements on Electromagnetic Properties of Radio Absorbing Coating. – 20th Int. Crimean Conf. "Microwave & Telecommunication", 2010, DOI:10.1109/CRMICO.2010.5632971.
19. Zhukov P.A., Kirillov V.Yu. The Use of Radio Absorbing Materials for Electronic Devices. – 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2020, DOI:10.1109/REEPE49198.2020.9059210.
20. Кириллов В.Ю. и др. Термостойкий радиопоглощающий материал для уменьшения помехоэмиссии и ослабления резонансных явлений бортовых приборов и устройств космических аппаратов. – Известия РАН. Серия физическая, 2021, т. 85, № 11, с. 1573–1576.
21. Кириллов В.Ю., Жуков П.А., Торлупа А.А. Применение радиопоглощающих материалов для ослабления высокочастотных помех в электрических цепях электротехнических комплексов летательных аппаратов. – Электричество, 2022, № 4, с. 66–71.
#
1. Ott H.W. Electromagnetic Compatibility Engineering. John Wiley & Sons, Inc., 2009, 843 p.
2. Barns J. Elektronnoe konstruirovanie: Metody bor'by s pome-khami (Electronic Design: Anti-Interference Methods). М.: Мir, 1990, 238 p.
3. Nguen V.T., Kirillov V.Yu. Elektrichestvo – in Russ. (Electricity), 2021, No. 3, pp. 54–59.
4. Getmanets A.N. et al. Tekhnologii elektromagnitnoy sovmestimosti – in Russ. (Electromagnetic Compatibility Technologies), 2020, No. 3 (74), pp. 3–24.
5. Noise, Сross-talk, Jitter, Skew and EMI. Section 6. Backplane Designer’s guide. Fairchild Semiconductor Corporation MS500736, 2002, 11 p.
6. Kechiev L.N. Pechatnye platy i uzly gigabitnoy elektroniki (Printed Circuit Boards and Nodes of Gigabit Electronics). М.: Grifon, 2017, 423 p.
7. Gizatullin Z.M., Chermoshentsev S.F. Informatsionnye tekhnologii – in Russ. (Information Technology), 2010, No. 6, pp. 2–7.
8. Hill D.A., Cavcey K.H., Johnk R.T. Cross-Talk Between Microstrip Transmission Lines. – IEEE Transactions on EMC, 1994, vol. 36, No. 4, pp. 314–321, DOI:10.1109/15.328861.
9. Brooks D. Signal Integrity Issues and Printed Circuit Board Design. Prentice Hall PTR, 2003, 432 p.
10. Nguen V.T., Kirillov V.Yu. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki – in Russ. (Proceedings of Tula State University. Technical Sciences), 2021, No. 2, pp. 563–568.
11. Kechiev L.N. Ekranirovanie radioelektronnoy apparatury. Inzhenernoe posobie (Shielding of Electronic Equipment. Engineering Manual). М.: Grifon, 2019, 722 p.
12. Kovaleva Т.Yu. et al. 27 mezhdunar. konf. “Elektromagnitnoe pole i materialy. Fundamental'nye fizicheskie issledovaniya” (27 In-ternational Conf. "Electromagnetic Field and Materials. Fundamental Physical Research”), 2015, pp. 431–436.
13. Tamminen A. et al. Transmittance and Monostatic Reflectivity of Radar Absorbing Materials for CATR. – The 2nd European Conf. on Antennas and Propagation, 2007, DOI:10.1049/ic.2007.1561.
14. Gevorkyan A.V., Privalova T. Yu. The Radiation Characteristics of 3.43: 1 Bandwidth Dipole Antenna with Radar Absorbing Material. – IEEE Radio and Antenna Days of the Indian Ocean, 2018,DOI:10.23919/RADIO.2018.8572346
15. Anyutin N.V., Titarenko A.V., Elizarov S.V. Justification of the Conditions of Reproducible Measured Characteristics of Radio Absorbing Materials in Free Space. – Radiation and Scattering of Electromagnetic Waves 2017, DOI:10.1109/RSEMW.2017.8103597.
16. Zhang Ch. et al. Application of radar absorbing material in design of metal space frame radomes. – Cross Strait Quad-Regional Radio Science and Wireless Technology Conf., 2011, DOI:10.1109/CSQRWC.2011.6036926.
17. Kalikintseva D.А. et al. 18 mezhdunarodnaya konferentsiya “Elektromagnitnoe pole i materialy (fundamental'nye fizicheskie issledovaniya)”– in Russ. (18th International Conference “Electromagnetic Field and Materials (Fundamental Physical Research)”), 2021, pp. 313–322.
18. Budai A.G. et al. Influence of Gratings Made from Conducting Wire Elements on Electromagnetic Properties of Radio Absorbing Coating. – 20th Int. Crimean Conf. "Microwave & Telecommunication", 2010, DOI:10.1109/CRMICO.2010.5632971.
19. Zhukov P.A., Kirillov V.Yu. The Use of Radio Absorbing Materials for Electronic Devices. – 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2020, DOI:10.1109/REEPE49198.2020.9059210.
20. Kirillov V.Yu. et al. Izvestiya RAN. Seriya fizicheskaya – in Russ. (News of the Russian Academy of Sciences. Physical Series), 2021, vol. 85, No. 11, pp. 1573–1576.
21. Kirillov V.Yu., Zhukov P.A., Torlupa А.А. Elektrichestvo – in Russ. (Electricity), 2022, No. 4, pp. 66–71.
Published
2023-05-25
Section
Article