Lightning Discharge as a Self-Organizing Transport Network. Part 2. Reversing Point and Lightning Transients
Abstract
The second part of the study addresses the problem of a lightning discharge macroscale asymmetry. It is shown that the displacement rates of both the reversing point and weighted averaged lightning potential are governed by the difference of peripheral discharge currents. The reversing point movement in the direction of the dominant leader leads to a change in the weighted average lightning potential and serves as a key to explaining the macroscale manifestations of lightning discharge asymmetry. The conditions under which the negative leader becomes -- already at the lightning discharge late development stage -- the dominant one instead of the positive one, which retains its dominance in the overwhelming majority of situations, are studied. Based on the moving reversing point paradigm, the article proposes classification of the main types of transients associated with reactivation of the dominant leader’s decayed branches, i.e., a leader with the prevailing peripheral current. It is shown that the transients caused by reactivation of the dominant negative leader’s decayed branches are polar opposites of the transients associated with the dominance of the positive leader. It has been found that the transients are accompanied by recharging of the leader channel sheath. Under these conditions, the charge per unit length of the highly conductive leader channel core is the recharging process governing parameter. A possible development scenario of compact intracloud discharges is described, which is consistent with the reversing point movement concept formulated in the work.
References
Иудин Д.И. и др. Разряд молнии как самоорганизующаяся транспортная сеть. Ч. 1. Концепция асимметричного разрядного древа. – Электричество, 2023, № 6, с. 77–88.
Базелян Э.М., Райзер Ю.П. Физика молнии и молниезащиты. М.: Физматлит, 2001, 320 с.
Ngin T. et al. Does the Lightning Current Go to Zero between Ground Strokes? Is There a Current “Cutoff”? – Geophysical Research Letters, 2014, vol. 41, pp. 3266–3273, DOI:10.1002/2014GL059601.
Zhu Y. et al. Multiple Strokes Along the Same Channel to Ground in Positive Lightning Produced by a Supercell. – Geophysical Research Letters, 2021, vol. 48, DOI:10.1029/2021GL096714.
Iudin D. I. Lightning as an Asymmetric Branching Network. – Atmospheric Research, 2021, vol. 256, pp. 1–12, DOI:10.1016/j.atmosres.2021.105560.
Iudin D.I. et al. Advanced Numerical Model of Lightning Development: Application to Studying the Role of LPCR in Determining Lightning Type. – Journal of Geophysical Research: Atmospheres, 2017, vol. 122(12), pp. 6416–6430, DOI: 10.1002/2016jd026261.
Stolzenburg M. et al. Transient Luminosity Along Negative Stepped Leaders in Lightning. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120, pp. 3408–3435, DOI:10.1002/ 2014JD022933.
Ding Z. et al. On a Possible Mechanism of Reactivation of Decayed Branches of Negative Stepped Leaders. – Journal of Geophysical Research: Atmospheres, 2020, vol. 125 (23), DOI:10.1029/ 2020JD033305.
Van der Velde O.A., Montanya J. Asymmetries in Bidirectional Leader Development of Lightning Flashes. – Journal of Geophysical Research: Atmospheres, 2013, vol. 118(24), pp. 13504–13519, DOI: 10.1002/2013JD020257.
Williams E.R., Heckman S. Polarity Asymmetry in Lightning Leaders: The Evolution of Ideas on Lightning Behavior from Strikes to Aircraft. – Journal AerospaceLab, 2012, vol. 5, pp. 1–8.
Hare B.M. et al. Needle-Like Structures Discovered on Positively Charged Lightning Branches. – Nature, 2019, vol. 568, pp. 360–363, DOI:10.1038/s41586-019-1086-6.
Saba M.M.F. et al. Optical Observation of Needles in Upward Lightning Flashes. – Scientific Reports, 2020, vol. 10, DOI:10.1038/s41598-020-74597-6.
Wu B. et al. A +CG Flash Caused by a Sequence of Bidirectional Leaders that Served to Form a Ground-Reaching Branch of a Pre-Existing Horizontal Channel. – Earth and Space Science Open Archive, 2021, DOI:10.1002/essoar.10503918.2.
Hare B.M. et al. Needle Propagation and Twinkling Characteristics. – Journal of Geophysical Research: Atmospheres, 2021, vol. 126(6), DOI:10.1029/2020JD034252.
Pu Y., Cummer S.A. Needles and Lightning Leader Dynamics Imaged with 100–200 MHz Broadband VHF Interferometry. – Geophysical Research Letters, 2019, vol. 46(22), pp. 13556–13563, DOI:10.1029/2019GL085635.
Dwyer J.R., Uman M.A. The Physics of Lightning. – Physics Reports, 2014, vol. 534(4), pp. 147–241, DOI:10.1016/j.physrep.2013.09.004.
Leal A.F.R., Rakov V.A., Rocha B.R.P. Compact Intracloud Discharges: New Classification of Field Waveforms and Identification by Lightning Locating Systems. – Electric Power Systems Research, 2019, vol. 173, pp. 251–262, DOI:10.1016/j.epsr.2019.04.016.
Nag A. Characterization and Modeling of Lightning Processes with Emphasis on Compact Intracloud Discharges, PhD Dissertation, Univ. of Fla., Gainesville, 2010, 508 p.
Rison W. et al. Observations of Narrow Bipolar Events Reveal How Lightning is Initiated in Thunderstorms. – Nature Communications, 2016, vol. 7, DOI:10.1038/ncomms10721.
Tilles J.N. et al. Fast Negative Breakdown in Thunderstorms. – Nature Communications, 2019, vol. 10 (1), DOI:10.1038/s41467-019-09621-z.
Liu F. et al. Optical Emissions Associated with Narrow Bipolar Events from Thunderstorm Clouds Penetrating into the Stratosphere. – Nature Communications, 2021, vol. 12, DOI: 10.1038/s41467-021-26914-4.
Attanasio A., Krehbiel P.R., da Silva C.L. Griffiths and Phelps Lightning Initiation Model, Revisited. – Journal of Geophysical Research: Atmospheres, 2019, vol. 124, pp. 8076–8094, DOI: 10.1029/2019JD030399.
Cooray V. et al. Modeling Compact Intracloud Discharge (CID) as a Streamer Burst. – Atmosphere, 2020, vol. 11, DOI: 10.3390/atmos11060549.
Attanasio A., da Silva C., Krehbiel P. Electrostatic Conditions That Produce Fast Breakdown in Thunderstorms. – Journal of Geophysical Research: Atmospheres, 2021, vol. 126, DOI:10.1029/2021JD034829.
Hamlin T. et al. Estimating Lightning Channel Characteristics of Positive Narrow Bipolar Events Using Intrachannel Current Reflection Signatures. – Journal of Geophysical Research, 2007, vol. 112, DOI:10.1029/2007JD008471.
Nag A., Rakov V.A. Compact Intracloud Lightning Discharges: 1. Mechanism of Electromagnetic Radiation and Modeling. – Journal of Geophysical Research, 2010, vol. 115, DOI:10.1029/2010J D014235.
Базелян Э.М., Райзер Ю.П. Искровой разряд. М.: МФТИ, 1997, 320 с.
Иудин Д.И., Сысоев А.А., Раков В.А. Инициация молнии как следствие естественной эволюции грозового облака. Ч. 1. Роль отлипания в снижении критической разрядной напряжённости воздуха. – Электричество, 2022, № 11, с. 13–28.
Иудин Д.И., Сысоев А.А., Раков В.А. Инициация молнии как следствие естественной эволюции грозового облака. Ч. 2. Достримерный этап. – Электричество, 2022, № 12, с. 13–22.
Иудин Д.И., Сысоев А.А., Раков В.А. Инициация молнии как следствие естественной эволюции грозового облака. Ч. 3. Стримеры и стримерно-лидерный переход – Электричество, 2023, № 1, с. 16–27.
Starikovskiy A.Yu., Aleksandrov N.L. How Pulse Polarity and Photoionization Control Streamer Discharge Development in Long Air Gaps. – Plasma Sources Science and Technology, 2020, vol. 29, DOI:10.1088/1361-6595/ab9484.
Mazur V., Ruhnke L.H. The Physical Processes of Current Cutoff in Lightning Leaders. – Journal of Geophysical Research: Atmospheres, 2014, vol. 119, pp. 2796–2810, DOI: 10.1002/2013JD0 20494.
---
Работа выполнена при поддержке Российского научного фонда (проект № 23-21-00057)
#
Iudin D.I., Korovkin N.V., Syssoev A.A., Hayakawa M. Elektrichestvo – in Russ. (Electricity), 2023, No. 6, pp. 77–88, DOI:10.24160/0013-5380-2023-6-77-88.
Bazelyan E.M., Rayzer Yu.P. Fizika molnii i molniezashchity (Lightning Physics and Lightning Protection). М.: Fizmatlit, 2001, 320 p.
Ngin T. et al. Does the Lightning Current Go to Zero between Ground Strokes? Is There a Current “Cutoff”? – Geophysical Research Letters, 2014, vol. 41, pp. 3266–3273, DOI:10.1002/2014GL059601.
Zhu Y. et al. Multiple Strokes Along the Same Channel to Ground in Positive Lightning Produced by a Supercell. – Geophysical Research Letters, 2021, vol. 48, p. e2021GL096714, DOI: 10.1029/2021 GL096714.
Iudin D.I. Lightning as an Asymmetric Branching Network. – Atmospheric Research, 2021, vol. 256, pp. 1–12, DOI:10. 1016/j.atmosres.2021.105560.
Iudin D.I. et al. Advanced Numerical Model of Lightning Development: Application to Studying the Role of LPCR in Determining Lightning Type. – Journal of Geophysical Research: Atmosphe-res, 2017, vol. 122(12), pp. 6416–6430, DOI:10.1002/2016jd026261.
Stolzenburg M. et al. Transient Luminosity Along Negative Stepped Leaders in Lightning. – Journal of Geophysical Research: Atmospheres, 2015, vol. 120, pp. 3408–3435, DOI:10.1002/2014 JD022933.
Ding Z., Rakov V.A., Zhu Y., Tran M.D. On a Possible Mechanism of Reactivation of Decayed Branches of Negative Stepped Leaders. – Journal of Geophysical Research: Atmospheres, 2020, vol. 125 (23), p. e2020JD033305, DOI:10.1029/2020JD033305.
Van der Velde O.A., Montanya J. Asymmetries in Bidirectional Leader Development of Lightning Flashes. – Journal of Geophysical Research: Atmospheres, 2013, vol. 118(24), pp. 13504–13519, DOI: 10.1002/2013JD020257.
Williams E.R., Heckman S. Polarity Asymmetry in Lightning Leaders: The Evolution of Ideas on Lightning Behavior from Strikes to Aircraft. – Journal AerospaceLab, 2012, vol. 5, pp. 1–8.
Hare B.M. et al. Needle-Like Structures Discovered on Positively Charged Lightning Branches. – Nature, 2019, vol. 568, pp. 360–363, DOI:10.1038/s41586-019-1086-6.
Saba M.M.F. et al. Optical Observation of Needles in Upward Lightning Flashes. – Scientific Reports, 2020, vol. 10, p. 17460, DOI:10.1038/s41598-020-74597-6.
Wu B. et al. A +CG Flash Caused by a Sequence of Bidirectional Leaders that Served to Form a Ground-Reaching Branch of a Pre-Existing Horizontal Channel. – Earth and Space Science Open Archive, 2021, DOI:10.1002/essoar.10503918.2.
Hare B. M. et al. Needle Propagation and Twinkling Characteristics. – Journal of Geophysical Research: Atmospheres, 2021, vol. 126(6), p. e2020JD034252, DOI:10.1029/2020JD034252.
Pu Y., Cummer S.A. Needles and Lightning Leader Dynamics Imaged with 100–200 MHz Broadband VHF Interferometry. – Geophysical Research Letters, 2019, vol. 46(22), pp. 13556–13563, DOI:10.1029/2019GL085635.
Dwyer J.R., Uman M.A. The Physics of Lightning. – Phy-sics Reports, 2014, vol. 534(4), pp. 147–241, DOI:10.1016/j.physrep. 2013.09.004.
Leal A.F.R., Rakov V.A., Rocha B.R.P. Compact Intracloud Discharges: New Classification of Field Waveforms and Identification by Lightning Locating Systems. – Electric Power Systems Research, 2019, vol. 173, pp. 251–262, DOI:10.1016/j.epsr.2019.04.016.
Nag A. Characterization and Modeling of Lightning Processes With Emphasis on Compact Intracloud Discharges, PhD dissertation, Univ. of Fla., Gainesville, 2010, 508 p.
Rison W. et al. Observations of Narrow Bipolar Events Reveal How Lightning is Initiated in Thunderstorms. – Nature Communications, 2016, vol. 7, p. 10721, DOI:10.1038/ncomms10721.
Tilles J.N. et al. Fast Negative Breakdown in Thunderstorms. – Nature Communications, 2019, vol. 10 (1), p. 1648, DOI:10. 1038/s41467-019-09621-z.
Liu F. et al. Optical Emissions Associated with Narrow Bipolar Events from Thunderstorm Clouds Penetrating into the Stratosphere. – Nature Communications, 2021. vol. 12, p 6631, DOI: 10.1038/s41467-021-26914-4.
Attanasio A., Krehbiel P.R., da Silva C.L. Griffiths and Phelps Lightning Initiation Model, Revisited. – Journal of Geophysical Research: Atmospheres, 2019, vol. 124, pp. 8076–8094, DOI: 10.1029/ 2019JD030399.
Cooray V., Cooray G., Rubinstein M., Rachidi F. Modeling Compact Intracloud Discharge (CID) as a Streamer Burst. – Atmosphere, 2020, vol. 11, p. 549, DOI: 10.3390/atmos11060549.
Attanasio A., da Silva C., Krehbiel P. Electrostatic Conditions That Produce Fast Breakdown in Thunderstorms. – Journal of Geophysical Research: Atmospheres, 2021, vol. 126, p. e2021JD034829, DOI:10.1029/2021JD034829.
Hamlin T. et al. Estimating Lightning Channel Characteristics of Positive Narrow Bipolar Events Using Intrachannel Current Reflection Signatures. – Journal of Geophysical Research, 2007, vol. 112, p. D14108, DOI:10.1029/2007JD008471.
Nag A. Rakov V.A. Compact Intracloud Lightning Dischar-ges: 1. Mechanism of Electromagnetic Radiation and Modeling. – Journal of Geophysical Research, 2010, vol. 115, p. D20102, DOI:10. 1029/2010JD014235.
Bazelyan E.M., Rayzer Yu.P. Iskrovoy razryad (Spark Discharge). M.: MFTI, 1997, 320 p.
Iudin D.I., Syssoev A.A., Rakov V.A. Elektrichestvo – in Russ. (Electricity), 2022, No. 11, pp. 13–28.
Iudin D.I., Syssoev A.A., Rakov V.A. Elektrichestvo – in Russ. (Electricity), 2022, No. 12, pp. 13–22.
Iudin D.I., Syssoev A.A., Rakov V.A. Elektrichestvo – in Russ. (Electricity), 2023, No. 1, pp. 16–27.
Starikovskiy A.Yu., Aleksandrov N.L. How Pulse Polarity and Photoionization Control Streamer Discharge Development in Long Air Gaps. – Plasma Sources Science and Technology, 2020, vol. 29, p. 075004, DOI:10.1088/1361-6595/ab9484.
Mazur V., Ruhnke L.H. The Physical Processes of Current Cut-off in Lightning Leaders. – Journal of Geophysical Research: Atmospheres, 2014, vol. 119, pp. 2796– 2810, DOI: 10.1002/2013JD020494.
---
The work was supported by the Russian Science Foundation (Project No. № 23-21-00057).