Determination of Shock Transformer Parameters for Short-Circuit Current Withstand Tests

  • Nikolay А. BESHENTSEV
  • Vasiliy S. LARIN
  • Evgeniy A. MILKIN
  • Dmitriy A. TIMOHINA
Keywords: experimental base, shock generator, shock transformer, peak withstand current, short-term withstand current, short-circuit current

Abstract

The work is aimed at developing the domestic experimental base of large capacities. The article presents the results of studies on determining the technical characteristics of a dedicated test transformer included in the circuit of the TI-100-2 shock generator and intended for significantly increasing the capabilities of the experimental base for testing high-voltage equipment for peak and short-term withstand short-circuit currents. The study included an analysis of inductive loads of the main types of equipment tested: circuit breakers, disconnectors, gas insulated switchgears, low-inductive and inductive current transformers, generator bus ducts, and outdoor switchgear busbars. Test current values are calculated depending on the test transformer transformation ratio in varying the inductive reactance of the main types of equipment tested, taking into account the TI-100-2 shock generator internal limitation in terms of peak and short-term current. The variation range of the dedicated test transformer transformation ratio has been determined, the use of which will make it possible to enhance the domestic experimental base testing capabilities.

Author Biographies

Nikolay А. BESHENTSEV

(All-Russian Electrotechnical Institute – Branch of FSUE ”RFNC-VNIITF n.a. academ. E.I. Zababakhin”, Moscow, Russia) – Lead Test Engineer.

Vasiliy S. LARIN

(All-Russian Electrotechnical Institute – Branch of FSUE ”RFNC-VNIITF n.a. academ. E.I. Zababakhin”, Moscow, Russia) – Head of the Transformer Dept., Cand. Sci. (Eng.)

Evgeniy A. MILKIN

(All-Russian Electrotechnical Institute – Branch of FSUE ”RFNC-VNIITF n.a. academ. E.I. Zababakhin”, Moscow, Russia) – Deputy Director of VEI, Head of Research and Testing of High-Voltage Equipment Division

Dmitriy A. TIMOHINA

(All-Russian Electrotechnical Institute – Branch of FSUE ”RFNC-VNIITF n.a. academ. E.I. Zababakhin”, Moscow, Russia) – Test Engineer.

References

1. Smeets R.P.P., Hofstee A., Dekker M. Development of Synthetic Test Methods for High-Voltage Circuit Breakers 145–1200 kV. – 4th International Conference on Electric Power Equipment – Switching Technology (ICEPE–ST), Xi'an, China, 2017, pp. 813–820, DOI: 10.1109/ICEPE-ST.2017.8188964.
2. Belda N.A., Smeets R.P.P. Test Circuits for HVDC Circuit Breakers. – IEEE Transactions on Power Delivery, 2017, vol. 32, No. 1, pp. 285–293, DOI: 10.1109/TPWRD.2016.2567783.
3. К 85-летию ВЭИ: сборник научных трудов / Под ред. В.Д. Ковалева. М: Знак, 2006, 236 с.
4. Травин Л.В. Флагман отечественной электротехники: 90 лет ФГУП ВЭИ. М.: Три квадрата, 2011, 341 с.
5. 100 лет ВЭИ / под ред. Л.В. Травина, Е.В. Басова. Снежинск: Изд-во РФЯЦ- ВНИИТФ, 2021, 370 с.
6. Федченко И.К. Техника высоких напряжения. Киев: Вища школа, 1969, 544 с.
7. Каплан В.В. Колебательный контур А.А. Горева для испытания аппаратов высокого напряжения. М.- Л.: Госэнергоиздат, 1960, 216 с.
8. Дмоховская Л.Ф. и др. Техника высоких напряжений / Под ред. Д.В. Разевига. М.: Энергия, 1976, 488 с.
9. Kuffel E., Zaengl W.S., Kuffel J. High Voltage Engineering: Fundamentals. Newnes, 2000, 560 p.
10. IEEE C37.23-2015. IEEE Standard for Metal-Enclosed Bus, 2016, DOI: 10.1109/IEEESTD.2016.7470712.
11. IEEE/IEC 62271-37-013-2021. High-Voltage Switchgear and Controlgear – Part 37-013: Alternating Current Generator Circuit-Breakers, 2021, DOI: 10.1109/IEEESTD.2021.9586449.
12. IEC 62271-100: 2021. High-Voltage Switchgear and Controlgear – Part 100; Alternating-Current Circuit-Breakers, 2021, 600 p.
13. IEC 62271-101: 2021. High-Voltage Switchgear and Controlgear – Part 101; Synthetic Testing, 2021.
14. ГОСТ Р 52736-2007. Короткие замыкания в электроустановках. Методы расчета электродинамического и термического действия тока короткого замыкания. М.: Стандартинформ, 2007, 41 с.
15. Бугреев В.А. и др. Электрические машины. Ч. 2: Машины переменного тока. М.: МИИТ, 2019, 61 с.
16. ГОСТ Р 55188-2012 (МЭК 60076-5:2006). Трансформаторы силовые. Стойкость к коротким замыканиям. М.: Стандартинформ, 2014, 28 с.
17. Тихомиров П.М. Расчет трансформаторов. М.: Энергоатомиздат, 1986, 528 с.
#
1. Smeets R.P.P., Hofstee A., Dekker M. Development of Synthetic Test Methods for High-Voltage Circuit Breakers 145–1200 kV. – 4th International Conference on Electric Power Equipment – Switching Technology (ICEPE–ST), Xi'an, China, 2017, pp. 813–820, DOI: 10.1109/ICEPE-ST.2017.8188964.
2. Belda N.A., Smeets R.P.P. Test Circuits for HVDC Circuit Breakers. – IEEE Transactions on Power Delivery, 2017, vol. 32, No. 1, pp. 285–293, DOI: 10.1109/TPWRD.2016.2567783.
3. K 85-letiyu VEI: sbornik nauchnyh trudov (To the 85th Anniversary of the VEI: Collection of Scientific Papers)/ Ed. by V.D. Kovalev. М: Znak, 2006, 236 p.
4. Travin L.V. Flagman otechestvennoy elektrotekhniki: 90 let FGUP VEI (Flagship of Domestic Electrical Engineering: 90 Years of FSUE VEI). М.: Tri kvadrata, 2011, 341 p.
5. 100 let VEI (100 years of VEI)/ Ed. by L.V. Travin, E.V. Basov. Snezhinsk: Izd-vo RFYATS- VNIITF, 2021, 370 p.
6. Fedchenko I.К. Tekhnika vysokih napryazheniy (High Voltage Technology). Kiev: Vishcha shkola, 1969, 544 p.
7. Kaplan V.V. Kolebatel'nyy kontur A.A. Goreva dlya ispytaniya apparatov vysokogo napryazheniya (Gorev's Oscillatory Circuit for Testing High Voltage Devices). М.- L.: Gosenergoizdat, 1960, 216 p.
8. Dmohovskaya L.F. et al. Tekhnika vysokih napryazheniy (High Voltage Technology) / Ed. by D.V. Razevig. М.: Energiya, 1976, 488 p.
9. Kuffel E., Zaengl W.S., Kuffel J. High Voltage Engineering: Fundamentals. Newnes, 2000, 560 p.
10. IEEE C37.23-2015. IEEE Standard for Metal-Enclosed Bus, 2016, DOI: 10.1109/IEEESTD.2016.7470712.
11. IEEE/IEC 62271-37-013-2021. High-Voltage Switchgear and Controlgear – Part 37-013: Alternating Current Generator Circuit-Breakers, 2021, DOI: 10.1109/IEEESTD.2021.9586449.
12. IEC 62271-100: 2021. High-Voltage Switchgear and Control-gear – Part 100; Alternating-Current Circuit-Breakers, 2021, 600 p.
13. IEC 62271-101: 2021. High-Voltage Switchgear and Cont-rolgear – Part 101; Synthetic Testing, 2021.
14. GОSТ R 52736-2007. Korotkie zamykaniya v elektroustanovkah. Metody rascheta elektrodinamicheskogo i termicheskogo deystviya toka korotkogo zamykaniya (Short-Circuits in Electrical Installations. Calculation Methods of Electrodynamics and Thermal Effects of Short-Circuit Current). М.: Standartinform, 2007, 41 p.
15. Bugreev V.А. et al. Elektricheskie mashiny. Ch. 2: Mashiny peremennogo toka (Electric Machines. Part 2: AC Machines). М.: МIIТ, 2019, 61 p.
16. GОSТ R 55188-2012 (МEК 60076-5:2006). Transformatory silovye. Stoykost' k korotkim zamykaniyam (Power Transformers. Ability to Withstand Short Circuits). М.: Standartinform, 2014, 28 p.
17. Tihomirov P.М. Raschet transformatorov (Calculation of Transformers). М.: Energoatomizdat, 1986, 528 p.
Published
2023-05-25
Section
Article