Overvoltage Protection of Submersible Oil Production Electrical Installations

  • Valeriy G. GOL'DSHTEYN
  • Nikolay F. DZHAGAROV
  • Vladimir S. ROMANOV
Keywords: submersible electrical installations, overvoltage protection, oil production power supply, overvoltage limiters, defects, failures, descending depth, heat resistance, oil underproduction, damages, resources

Abstract

The article discusses the results of studies aimed at ensuring reliable power supply and improving the energy efficiency of oil production equipment electrical installations. The operational data on failures of submersible electrical equipment and organizational and technical measures to improve its reliability and energy efficiency are analyzed. The classification of factors causing abnormalities and failures of power cables and electric motors is presented and analyzed. Among numerous hazardous operational factors causing an essential reduction in the service life of submersible electrical equipment, electromagnetic impacts in the form of external and internal overvoltages are singled out. Possible options for protection against overvoltages arising during the operation of electric centrifugal oil production pumps are estimated and compared with one another. The specific features and configuration of a power supply system for submersible electrical equipment via cable transmission lines with polymeric insulation, and application of overvoltage protection based on the use and taking into account the features of nonlinear zinc oxide overvoltage limiters in the oil production power supply systems are considered.

Author Biographies

Valeriy G. GOL'DSHTEYN

(Samara State Technical University, Samara, Russia) – Professor of the Automated Electric Power Systems Dept., Dr. Sci. (Eng.), Professor

Nikolay F. DZHAGAROV

(Nikola Vaptsarov Naval Academy, Varna, Bulgaria) – Professor of the Electrical Engineering Dept., Dr. Sci. (Eng.), Professor

Vladimir S. ROMANOV

(LLC SamaraNIPIneft, Samara; Togliatti State University; Togliatti, Russia) – Senior Researcher of the Standard Design and Standardization Dept.;  Docent of the Power Supply and Electrical Engineering Dept., Cand. Sci. (Eng.)

References

1. СТО 56947007-29.240.01.221-2016. Руководство по защите электрических сетей напряжением 110–750 кВ от грозовых и внутренних перенапряжений. М.: ПАО «ФСК ЕЭС», 2016, 92 с.
2. Методические указания по защите распределительных электрических сетей напряжением 0,4–10 кВ от грозовых перенапряжений. М.: ОАО «ФСК ЕЭС», 2008, 52 с.
3. Романов В.С., Гольдштейн В.Г. Повышение эффективности эксплуатации погружных электроустановок нефтедобычи. М.: Электроэнергия. Передача и распределение, 2023, 190 с.
4. Назаров А.А., Кавченков В.П. Разработка методики оценки надежности и приоритетности ремонтов в региональной энергосистеме с учетом возможного риска. – Электроэнергия. Передача и распределение, 2020, № 3, с. 50–57.
5. Стариков А.В. и др. Линеаризованная математическая модель погружного асинхронного двигателя. – Вестник Самарского государственного технического университета. Серия «Технические науки», 2019, № 4 (64), с. 155–167.
6. Халилов Ф.Х. и др. Ограничители перенапряжений для защиты изоляции электрооборудования и линий сетей среднего, высокого и сверхвысокого напряжения от грозовых и внутренних перенапряжений. М.: Энергоатомиздат, 2010, 264 с.
7. Jacobsen E. et al. Dynamic Rating of Transmission Cables, CIGRE Session, Paris, 2010.
8. Srinivas N.N. UtilX Corporation, USA. Strategies for Preventive Maintenance of Power Cable System. 2011.
9. Mendelsohn A., Ramachandran R., Richardson B. Importance of Quality Compounds for Utility Cable Reliability. – IEEE Rural Electric Power Conference, 2008, DOI:10.1109/REPCON.2008.4520138.
10. Нурбосынов Д.Н., Табачникова Т.В., Швецкова Л.В. Повышение эксплуатационно-энергетических характеристик электротехнического комплекса добывающей скважины при добыче вязкой и высоковязкой нефти. – Промышленная энергетика, 2015, № 8, с. 18–22.
11. Корявин А.Р. Проблемы выбора внешней изоляции для работы в условиях загрязнения. – Электричество, 2017, № 4, с. 22–30.
12. Sukhachev I.S., Gladkikh T.D., Sushkov V.V. An Algorithm to Assess the Risk of Loss in Oil Production in the Event of an Electric Submersible Motor Failure. – IEEE Conference 2016 Dynamics of Systems, Mechanisms and Machines, 2016, DOI: 10.1109/Dynamics. 2016. 7819089.
13. Хренников А.Ю. Комплексное диагностическое моделирование параметров технического состояния трансформаторно-реакторного электрооборудования: дис. … докт. техн. наук. Самара, 2009, 373 с.
14. Справочник по проектированию электрических сетей / под ред. Д.Л. Файбисовича. М.: ЭНАС, 2009, 392 с.
15. Фархадзаде Э.М. и др. Совершенствование методов повышения надежности объектов электроэнергетических систем. – Электричество, 2016, № 8, с. 18–28.
#
1. SТО 56947007-29.240.01.221-2016. Rukovodstvo po zashchite elektricheskih setey napryazheniem 110–750 kV ot grozovyh i vnutrennih perenapryazheniy (Guidelines for the Protection of 110-750 kV Electrical Networks from Lightning and Internal Overvoltage). М.: PАО «FSК ЕES», 2016, 92 p.
2. Metodicheskie ukazaniya po zashchite raspredelitel'nyh elektricheskih setey napryazheniem 0,4–10 kV ot grozovyh perenapryazheniy (Methodological Guidelines for the Protection of Distribution Electrical Networks with a 0.4–10 kV Voltage from Lightning Overvoltage). М.: ОАО «FSК ЕES», 2008, 52 p.
3. Romanov V.S., Gol'dshteyn V.G. Povyshenie effektivnosti ekspluatatsii pogruzhnyh elektroustanovok neftedobychi (Improving the Operation Efficiency of Submersible Electrical Installations of Oil Production). М.: Elektroenergiya. Peredacha i raspredelenie, 2023, 190 p.
4. Nazarov A.A., Kavchenkov V.P. Elektroenergiya. Peredacha i raspredelenie – in Russ. (Electricity. Transmission and Distribution), 2020, No. 3, pp. 50–57.
5. Starikov А.В. et al. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya «Tekhnicheskie nauki» – in Russ. (Bulletin of Samara State Technical University. Series "Technical Sciences"), 2019, No. 4 (64), pp. 155–167.
6. Halilov F.H. et al. Ogranichiteli perenapryazheniy dlya zashchity izolyatsii elektrooborudovaniya i liniy setey srednego, vysokogo i sverhvysokogo napryazheniya ot grozovyh i vnutrennih perenapryazheniy (Surge Arresters to Protect the Insulation of Electrical Equipment and Lines of Medium, High and Ultra-High Voltage Networks from Lightning and Internal Overvoltage). М.: Energoatomizdat, 2010, 264 p.
7. Jacobsen E. et al. Dynamic Rating of Transmission Cables, CIGRE Session, Paris, 2010.
8. Srinivas N.N. UtilX Corporation, USA. Strategies for Preventive Maintenance of Power Cable System. 2011.
9. Mendelsohn A., Ramachandran R., Richardson B. Importance of Quality Compounds for Utility Cable Reliability. – IEEE Rural Electric Power Conference, 2008, DOI:10.1109/REPCON.2008.4520138.
10. Nurbosynov D.N., Tabachnikova T.V., Shvetskova L.V. Promyshlennaya energetika – in Russ. (Industrial Power Engineering), 2015, No. 8, pp. 18–22.
11. Koryavin А.R. Elektrichestvo – in Russ. (Electricity), 2017, No. 4, pp. 22–30.
12. Sukhachev I.S., Gladkikh T.D., Sushkov V.V. An Algorithm to Assess the Risk of Loss in Oil Production in the Event of an Electric Submersible Motor Failure. – IEEE Conference 2016 Dynamics of Systems, Mechanisms and Machines, 2016, DOI: 10.1109/Dynamics. 2016. 7819089.
13. Hrennikov A.Yu. Kompleksnoe diagnosticheskoe modelirovanie parametrov tekhnicheskogo sostoyaniya transformatorno-reaktornogo elektrooborudovaniya: dis. … dokt. tekhn. nauk (Complex Diagnostic Modeling of the technical condition parameters of transformer – reactor electrical equipment: dis. ... Dr. Sci.(Eng.)). Samara, 2009, 373 p.
14. Spravochnik po proektirovaniyu elektricheskih setey (Handbook on the Design of Electrical Networks) / Ed. by D.L. Faibisovich. М.: ENАS, 2009, 392 p.
15. Farhadzade E.М. et al. Elektrichestvo – in Russ. (Electricity), 2016, No. 8, pp. 18–28
Published
2023-06-29
Section
Article