Development and Study of a Three-Region Vector Control System for a High-Speed Asynchronous Spindle

  • Alexandr A. ALEKSEEV
  • Evgeniy V. KRASIL'NIK"YANTS
  • Vladimir V. TYUTIKOV
Keywords: electric drive, control system, induction motor, vector control, spindle, high-speed machining

Abstract

One of the main requirements for electric drives of high-speed spindles in metalworking machines is a possibility to operate in a wide range of speeds with minimum acceleration and deceleration times in order to increase the work productivity. Conventional two-region electric drive control systems that distinguish between constant torque and constant power zones are not always able to meet these requirements in a comprehensive manner. The article describes the development of the main motion drive control system based on an induction motor with distinguishing of the third speed control region - a constant slip region (decreasing power), which makes it possible to operate with the maximum torque in a wide speed range. A methodology for determining the boundaries of the regions and control laws is proposed, which is based on a priori information about the drive and motor’s equivalent circuit parameters. The results of simulation and experiments carried out on the Fanuc spindle induction motor for a rated capacity of 15 kW and maximum speed of 15000 rpm show high effectiveness of the developed control system. By using the proposed control system of a high-speed spindle drive, the required accuracy in the high-speed machining mode is obtained along with increasing the productivity of metalworking machines.

Author Biographies

Alexandr A. ALEKSEEV

(Ivanovo State Power Engineering University n. a. V.I. Lenin, Ivanovo, Russia) – Postgraduate Student of the Electric Drive and Automation of Industrial Installations Dept.

Evgeniy V. KRASIL'NIK"YANTS

(Ivanovo State Power Engineering University n. a. V.I. Lenin, Ivanovo, Russia) –Senior Researcher, Cand. Sci. (Eng.)

Vladimir V. TYUTIKOV

(Ivanovo State Power Engineering University n. a. V.I. Lenin, Ivanovo, Russia) – Head of the Electronics and Microprocessor Systems Dept., Vice-Rector for Scientific Work, Dr. Sci.(Eng.), Professor.

References

1. Cai C. et al. Optimization Design of High-Speed Motorized Spindle Control System. – 4th International Conference on Information Science and Control Engineering (ICISCE), 2017, pp. 1073–1079, DOI: 10.1109/ICISCE.2017.224.
2. Виноградов А.Б. Векторное управление электроприводами переменного тока. Иваново: ИГЭУ им. В.И. Ленина, 2008, 298 с.
3. Nam K.H. AC Motor Control and Electrical Vehicle Applications. Boca Raton: CRC Press, 2018, 574 p., DOI:10.1201/9781315200149
4. Llorente R.М. Practical Control of Electric Machines: Model-Based Design and Simulation. Springer Cham, 2020, 622 p.
5. Kim S.-H. Electric Motor Control. Elsevier, 2017, 438 p.
6. Casadei D. et al. A Control Scheme with Energy Saving and DC-Link Overvoltage Rejection for Induction Motor Drives of Electric Vehicles. – IEEE Trans. on Industry Applications, July-August 2010, vol. 46, No. 4, pp. 1436–1446, DOI: 10.1109/TIA.2010.2049627.
7. Шрейнер Р.Т. и др. Трехзонная система векторного частотного управления асинхронным электроприводом – VIII Международная конференция по автоматизированному электроприводу АЭП-2014, 2014, т. 1., с. 433–437.
8. Attaianese C., Monaco M.D., Tomasso G. Maximum Torque Per Watt (MTPW) Field-Oriented Control of Induction Motor. Electrical Engineering, 2021, vol. 103, pp. 2611–2623. DOI: 10.1007/s00202-021-01238-0.
9. Dong Z. et al. Operating Point Selected Flux-Weakening Control of Induction Motor for Torque-Improved High-Speed Operation Under Multiple Working Conditions. – IEEE Transactions on Power Electronics, 2019, vol. 34, No. 12, pp. 12011-12023, DOI: 10.1109/TPEL.2019.2905536.
10. Dong Z. et al. Flux-Weakening Control for Induction Motor in Voltage Extension Region: Torque Analysis and Dynamic Performance Improvement. – IEEE Transactions on Industrial Electronics, 2018, vol. 65, No. 5, pp. 3740–3751, DOI: 10.1109/TIE.2017.2764853.
11. Ahmed A. et al. Finite-Control Set Model Predictive Control Method for Torque Control of Induction Motors Using a State Tracking Cost Index. – IEEE Transactions on Industrial Electronics, 2017, vol. 64, No. 3, pp. 1916–1928, DOI: 10.1109/TIE.2016.2631456.
12. Anuchin A.S. et al. A Method of Determining the Maximum Performance Torque-Speed Characteristic for an Induction Motor Drive over Its Entire Speed Range. – IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 2017, DOI: 10.1109/RTUCON.2017.8124815.
13. Свидетельство о государственной регистрации программы для ЭВМ № 2022611266. Программный модуль «автонастройка и идентификация» для комплекса «ServoIDE» версии 3.0 / Е.В. Красильникъянц и др., 2022 г.
14. DQ Limiter [Электрон. ресурс], URL https://www.math-works.com/help/mcb/ref/dqlimiter.html (дата обращения 18.06.2023).
15. Field-Oriented Control by the Numbers [Электрон. ресурс], URL: https://www.edn.com/field-oriented-control-by-the-numbers (дата обращения 18.06.2023).
#
1. Cai C. et al. Optimization Design of High-Speed Motorized Spindle Control System. – 4th International Conference on Information Science and Control Engineering (ICISCE), 2017, pp. 1073–1079, DOI: 10.1109/ICISCE.2017.224.
2. Vinogradov A.B. Vektornoe upravlenie elektroprivodami peremennogo toka (Vector Control of AC Electric Drives). Ivanovo: IGEU im. V.I. Lenina, 2008, 298 p.
3. Nam K.H. AC Motor Control and Electrical Vehicle Applications. Boca Raton: CRC Press, 2018, 574 p., DOI:10.1201/9781315200149.
4. Llorente R.М. Practical Control of Electric Machines: Model-Based Design and Simulation. Springer Cham, 2020, 622 p.
5. Kim S.-H. Electric Motor Control. Elsevier, 2017, 438 p.
6. Casadei D. et al. A Control Scheme with Energy Saving and DC-Link Overvoltage Rejection for Induction Motor Drives of Electric Vehicles. – IEEE Trans. on Industry Applications, July-August 2010, vol. 46, No. 4, pp. 1436–1446, DOI: 10.1109/TIA.2010.2049627.
7. Shreyner R.Т. et al. VIII Mezhdunarodnaya konferentsiya po avtomatizirovannomu elektroprivodu AEP-2014 – in Russ. (VIII International Conference on Automated Electric Drive AEP-2014), 2014, vol. 1., pp. 433–437.
8. Attaianese C., Monaco M.D., Tomasso G. Maximum Torque Per Watt (MTPW) Field-Oriented Control of Induction Motor. Electrical Engineering, 2021, vol. 103, pp. 2611–2623. DOI: 10.1007/s00202-021-01238-0.
9. Dong Z. et al. Operating Point Selected Flux-Weakening Control of Induction Motor for Torque-Improved High-Speed Operation Under Multiple Working Conditions. – IEEE Transactions on Power Electronics, 2019, vol. 34, No. 12, pp. 12011-12023, DOI: 10.1109/TPEL.2019.2905536.
10. Dong Z. et al. Flux-Weakening Control for Induction Motor in Voltage Extension Region: Torque Analysis and Dynamic Performance Improvement. – IEEE Transactions on Industrial Electronics, 2018, vol. 65, No. 5, pp. 3740–3751, DOI: 10.1109/TIE.2017.2764853.
11. Ahmed A. et al. Finite-Control Set Model Predictive Control Method for Torque Control of Induction Motors Using a State Tracking Cost Index. – IEEE Transactions on Industrial Electronics, 2017, vol. 64, No. 3, pp. 1916–1928, DOI: 10.1109/TIE.2016.2631456.
12. Anuchin A.S. et al. A Method of Determining the Maximum Performance Torque-Speed Characteristic for an Induction Motor Drive over Its Entire Speed Range. – IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 2017, DOI: 10.1109/RTUCON.2017.8124815.
13. Svidetel'stvo o gosudarstvennoy registratsii programmy dlya EVM № 2022611266. Programmnyy modul' «avtonastroyka i identifikatsiya» dlya kompleksa «ServoIDE» versii 3.0 (Certificate of State Registration of the Computer Program No. 2022611266. Software Module "Auto-Tuning And Identification" for the Complex "ServoIDE" version 3.0) / E.V. Krasil'nik"yants et al., 2022 г.
14. DQ Limiter [Electron. resource], URL https://www.mathworks.com/help/mcb/ref/dqlimiter.html (Date of appeal 18.06.2023).
15. Field-Oriented Control by the Numbers [Electron. resource], URL: https://www.edn.com/field-oriented-control-by-the-numbers (Date of appeal 18.06.2023)
Published
2023-06-29
Section
Article