Development and Study of a Three-Region Vector Control System for a High-Speed Asynchronous Spindle
Abstract
One of the main requirements for electric drives of high-speed spindles in metalworking machines is a possibility to operate in a wide range of speeds with minimum acceleration and deceleration times in order to increase the work productivity. Conventional two-region electric drive control systems that distinguish between constant torque and constant power zones are not always able to meet these requirements in a comprehensive manner. The article describes the development of the main motion drive control system based on an induction motor with distinguishing of the third speed control region - a constant slip region (decreasing power), which makes it possible to operate with the maximum torque in a wide speed range. A methodology for determining the boundaries of the regions and control laws is proposed, which is based on a priori information about the drive and motor’s equivalent circuit parameters. The results of simulation and experiments carried out on the Fanuc spindle induction motor for a rated capacity of 15 kW and maximum speed of 15000 rpm show high effectiveness of the developed control system. By using the proposed control system of a high-speed spindle drive, the required accuracy in the high-speed machining mode is obtained along with increasing the productivity of metalworking machines.
References
2. Виноградов А.Б. Векторное управление электроприводами переменного тока. Иваново: ИГЭУ им. В.И. Ленина, 2008, 298 с.
3. Nam K.H. AC Motor Control and Electrical Vehicle Applications. Boca Raton: CRC Press, 2018, 574 p., DOI:10.1201/9781315200149
4. Llorente R.М. Practical Control of Electric Machines: Model-Based Design and Simulation. Springer Cham, 2020, 622 p.
5. Kim S.-H. Electric Motor Control. Elsevier, 2017, 438 p.
6. Casadei D. et al. A Control Scheme with Energy Saving and DC-Link Overvoltage Rejection for Induction Motor Drives of Electric Vehicles. – IEEE Trans. on Industry Applications, July-August 2010, vol. 46, No. 4, pp. 1436–1446, DOI: 10.1109/TIA.2010.2049627.
7. Шрейнер Р.Т. и др. Трехзонная система векторного частотного управления асинхронным электроприводом – VIII Международная конференция по автоматизированному электроприводу АЭП-2014, 2014, т. 1., с. 433–437.
8. Attaianese C., Monaco M.D., Tomasso G. Maximum Torque Per Watt (MTPW) Field-Oriented Control of Induction Motor. Electrical Engineering, 2021, vol. 103, pp. 2611–2623. DOI: 10.1007/s00202-021-01238-0.
9. Dong Z. et al. Operating Point Selected Flux-Weakening Control of Induction Motor for Torque-Improved High-Speed Operation Under Multiple Working Conditions. – IEEE Transactions on Power Electronics, 2019, vol. 34, No. 12, pp. 12011-12023, DOI: 10.1109/TPEL.2019.2905536.
10. Dong Z. et al. Flux-Weakening Control for Induction Motor in Voltage Extension Region: Torque Analysis and Dynamic Performance Improvement. – IEEE Transactions on Industrial Electronics, 2018, vol. 65, No. 5, pp. 3740–3751, DOI: 10.1109/TIE.2017.2764853.
11. Ahmed A. et al. Finite-Control Set Model Predictive Control Method for Torque Control of Induction Motors Using a State Tracking Cost Index. – IEEE Transactions on Industrial Electronics, 2017, vol. 64, No. 3, pp. 1916–1928, DOI: 10.1109/TIE.2016.2631456.
12. Anuchin A.S. et al. A Method of Determining the Maximum Performance Torque-Speed Characteristic for an Induction Motor Drive over Its Entire Speed Range. – IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 2017, DOI: 10.1109/RTUCON.2017.8124815.
13. Свидетельство о государственной регистрации программы для ЭВМ № 2022611266. Программный модуль «автонастройка и идентификация» для комплекса «ServoIDE» версии 3.0 / Е.В. Красильникъянц и др., 2022 г.
14. DQ Limiter [Электрон. ресурс], URL https://www.math-works.com/help/mcb/ref/dqlimiter.html (дата обращения 18.06.2023).
15. Field-Oriented Control by the Numbers [Электрон. ресурс], URL: https://www.edn.com/field-oriented-control-by-the-numbers (дата обращения 18.06.2023).
#
1. Cai C. et al. Optimization Design of High-Speed Motorized Spindle Control System. – 4th International Conference on Information Science and Control Engineering (ICISCE), 2017, pp. 1073–1079, DOI: 10.1109/ICISCE.2017.224.
2. Vinogradov A.B. Vektornoe upravlenie elektroprivodami peremennogo toka (Vector Control of AC Electric Drives). Ivanovo: IGEU im. V.I. Lenina, 2008, 298 p.
3. Nam K.H. AC Motor Control and Electrical Vehicle Applications. Boca Raton: CRC Press, 2018, 574 p., DOI:10.1201/9781315200149.
4. Llorente R.М. Practical Control of Electric Machines: Model-Based Design and Simulation. Springer Cham, 2020, 622 p.
5. Kim S.-H. Electric Motor Control. Elsevier, 2017, 438 p.
6. Casadei D. et al. A Control Scheme with Energy Saving and DC-Link Overvoltage Rejection for Induction Motor Drives of Electric Vehicles. – IEEE Trans. on Industry Applications, July-August 2010, vol. 46, No. 4, pp. 1436–1446, DOI: 10.1109/TIA.2010.2049627.
7. Shreyner R.Т. et al. VIII Mezhdunarodnaya konferentsiya po avtomatizirovannomu elektroprivodu AEP-2014 – in Russ. (VIII International Conference on Automated Electric Drive AEP-2014), 2014, vol. 1., pp. 433–437.
8. Attaianese C., Monaco M.D., Tomasso G. Maximum Torque Per Watt (MTPW) Field-Oriented Control of Induction Motor. Electrical Engineering, 2021, vol. 103, pp. 2611–2623. DOI: 10.1007/s00202-021-01238-0.
9. Dong Z. et al. Operating Point Selected Flux-Weakening Control of Induction Motor for Torque-Improved High-Speed Operation Under Multiple Working Conditions. – IEEE Transactions on Power Electronics, 2019, vol. 34, No. 12, pp. 12011-12023, DOI: 10.1109/TPEL.2019.2905536.
10. Dong Z. et al. Flux-Weakening Control for Induction Motor in Voltage Extension Region: Torque Analysis and Dynamic Performance Improvement. – IEEE Transactions on Industrial Electronics, 2018, vol. 65, No. 5, pp. 3740–3751, DOI: 10.1109/TIE.2017.2764853.
11. Ahmed A. et al. Finite-Control Set Model Predictive Control Method for Torque Control of Induction Motors Using a State Tracking Cost Index. – IEEE Transactions on Industrial Electronics, 2017, vol. 64, No. 3, pp. 1916–1928, DOI: 10.1109/TIE.2016.2631456.
12. Anuchin A.S. et al. A Method of Determining the Maximum Performance Torque-Speed Characteristic for an Induction Motor Drive over Its Entire Speed Range. – IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 2017, DOI: 10.1109/RTUCON.2017.8124815.
13. Svidetel'stvo o gosudarstvennoy registratsii programmy dlya EVM № 2022611266. Programmnyy modul' «avtonastroyka i identifikatsiya» dlya kompleksa «ServoIDE» versii 3.0 (Certificate of State Registration of the Computer Program No. 2022611266. Software Module "Auto-Tuning And Identification" for the Complex "ServoIDE" version 3.0) / E.V. Krasil'nik"yants et al., 2022 г.
14. DQ Limiter [Electron. resource], URL https://www.mathworks.com/help/mcb/ref/dqlimiter.html (Date of appeal 18.06.2023).
15. Field-Oriented Control by the Numbers [Electron. resource], URL: https://www.edn.com/field-oriented-control-by-the-numbers (Date of appeal 18.06.2023)