Experimental Studies of an Induction Motor with Cryogenic Cooling

  • Nikolay S. IVANOV
  • Sergey V. ZHURAVLEV
  • Anton A. SHIROKOV
  • Dmitriy M. SHISHOV
  • Sergey Yu. ZANEGIN
  • Marina V. ZDOROVA
  • Il'ya B. KOROBOV
  • Aleksandr Yu. SMIRNOV
Keywords: induction motor, cryogenic cooling, air tests, liquid nitrogen tests, demonstrator

Abstract

The article addresses matters concerned with the development and research tests in air and liquid nitrogen of an 18 kW submersible cryogenic induction motor. The motor core can be used as a drive of a pump for transferring liquefied natural gas (LNG). The induction motor parameters and characteristics are calculated out taking into account an ambient temperature of –196°C. Since the tests are carried out at two temperatures (20°C and –196°C), the motor characteristics are also calculated for a temperature of 20°C. To verify and refine the calculation results, a finite element analysis was performed in the ANSYS Maxwell software package environment. The finite element method was used to check the saturation of materials and the motor output characteristics. In elaborating the design, the materials suitable for use at cryogenic temperatures were analyzed. The materials considered in the analysis included electrical steels, electrical insulation materials, winding and connection wires, compounds, varnishes, adhesives and various mounting items. After the development of design documentation and manufacturing, research tests of the submersible induction motor were carried out in air and in a liquid nitrogen environment. During the tests, the condition of the insulation materials was checked, and pie charts were constructed to assess the motor characteristics based on the test results.

Author Biographies

Nikolay S. IVANOV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Head of the Research Division of the Electric Power, Electromechanical and Biotechnical Systems Dept., Cand. Sci. (Eng.)

Sergey V. ZHURAVLEV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Docent of the Electric Power, Electromechanical and Biotechnical Systems Dept., Cand. Sci. (Eng.).

Anton A. SHIROKOV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Postgraduate Student, Junior Researcher of the Research Division of the Electric Power, Electromechanical and Biotechnical Systems Dept.

Dmitriy M. SHISHOV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Docent of the Electric Power, Electromechanical and Biotechnical Systems Dept., Cand. Sci. (Eng.).

Sergey Yu. ZANEGIN

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Engineer of the Research Division of the Electric Power, Electromechanical and Biotechnical Systems Dept., Cand. Sci. (Eng.).

Marina V. ZDOROVA

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Postgraduate Student, Junior Researcher of the Research Division of the Electric Power, Electromechanical and Biotechnical Systems Dept.

Il'ya B. KOROBOV

(JSC "Afrikantov OKBM", Nizhny Novgorod, Russia) – Chief Designer of the SEC and GNH Equipment, Cand. Sci. (Eng.).

Aleksandr Yu. SMIRNOV

(JSC "Afrikantov OKBM", Nizhny Novgorod, Russia) – Leading Design Engineer, Dr. Sci. (Eng.), Docent.

References

1. В Нижнем Новгороде разработали насос для перекачивания СПГ [Электрон. ресурс], URL: https://russian.rt.com/business/news/763238-energetika-spg-rossiya (дата обращения 15.05.2023).
2. Копылов И.П. Электрические машины. М.: Энергоатомиздат, 1986, 360 с.
3. Зечихин Б.С., Журавлев С.В. Автоматизированное проектирование асинхронных двигателей с короткозамкнутым ротором. М.: Изд-во МАИ, 2003, 84 с.
4. Гольдберг О.Д., Гурин Я.С., Свириденко И.С. Проектирование электрических машин. М.: Высшая школа, 2001, 430 с.
5. Бертинов А.И., Синева Н.В. Индукционные трехфазные двигатели с различными роторами. М.: МЭИ, 1967, 72 с.
6. Ivanov N. et al. Research of Electric Power Quality Indicators at the Design Stage of an Aircraft Synchronous Generator. – International Conference on Electrotechnical Complexes and Systems (ICOECS), 2021, pp. 329–334, DOI: 10.1109/ICOECS52783.2021.9657422.
7. Bogdanov I. et al. Study of Electrical Steel Magnetic Properties for Fast Cycling Magnets of SIS100 and SIS300 Rings. – Proceedings of EPAC, Lucerne, Switzerland, 2004, pp. 1741–1743.
8. Шевцов Д.А. и др. Измерительный комплекс для регистрации петель гистерезиса ферромагнитных материалов. – Электротехника, 2022, № 1, с. 12–16.
9. Эстроком: электроизоляционные термостойкие материалы [Электрон. ресурс], URL: http://xn--j1aeebhfh0g.xn--p1ai/products/polimidnye-plenki/pm-s-tolshchinami-ot-100-mkm.php (дата обращения 15.05.2023).
10. Shively R., Miller H. Development of a Submerged Winding Induction Generator for Cryogenic Applications. – Conference Record of the 2000 IEEE International Symposium on Electrical Insulation, 2000, pp. 243–246, DOI: 10.1109/ELINSL.2000.845498.
11. Shively R. Submerged Cryogenic Motor Materials Development. – IEEE Electrical Insulation Magazine, 2003, vol. 19, No. 3, pp. 7–11, DOI: 10.1109/MEI.2003.1203016.
12. Sápi Z., Butler R. Properties of Cryogenic and Low Temperature Composite Materials – A Review. – Cryogenics, 2020, vol. 111, DOI:10.1016/j.cryogenics.2020.103190.
13. Carrier L.N.G. Submerged Electric Motor Pumps for Marine Liquefied Gas Cargo. – World Pump, 1996, September.
14. Rush S., Hall L. Tutorial on Cryogenic Submerged Electric Motor Pumps. – 18th International Pump Users Symposium, 2001, pp. 101–107.
15. James D.R., Sauers I. Electrical Insulation Materials for Superconducting Coil Applications. – IEEE Power Engineering Society General Meeting, 2004, vol.2, pp. 2062–2064, DOI: 10.1109/PES.2004.1373243.
16. ГОСТ 11828-86. Машины электрические вращающиеся. Общие методы испытаний. М.: ИПК Издательство стандартов, 2003, 32 с.
17. ГОСТ 7217-87. Машины электрические вращающиеся. Двигатели асинхронные. Методы испытаний. М.: ИПК Издательство стандартов, 2003, 41 с.
#
1. V Nizhnem Novgorode razrabotali nasos dlya perekachivaniya SPG (A Pump for Pumping LNG Has been Developed in Nizhny Novgorod) [Electron. resource], URL: https://russian.rt.com/business/news/763238-energetika-spg-rossiya (Date of appeal 15.05.2023).
2. Kopylov I.P. Elektricheskie mashiny (Electric Machines). М.: Energoatomizdat, 1986, 360 p.
3. Zechihin B.S., Zhuravlev S.V. Avtomatizirovannoe proektiro-vanie asinhronnyh dvigateley s korotkozamknutym rotorom (Computer-Aided Design of Asynchronous Motors with a Short-Circuited Rotor). М.: Izd-vo MAI, 2003, 84 p.
4. Gol'dberg O.D., Gurin Yа.S., Sviridenko I.S. Proektirovanie elektricheskih mashin (Design of Electric Machines). М.: Vysshaya shkola, 2001, 430 p.
5. Bertinov A.I., Sineva N.V. Induktsionnye trekhfaznye dvigateli s razlichnymi rotorami (Induction Three-Phase Motors with Various Rotors). М.: МEI, 1967, 72 p.
6. Ivanov N. et al. Research of Electric Power Quality Indicators at the Design Stage of an Aircraft Synchronous Generator. – International Conference on Electrotechnical Complexes and Systems (ICOECS), 2021, pp. 329–334, DOI: 10.1109/ICOECS52783.2021.9657422.
7. Bogdanov I. et al. Study of Electrical Steel Magnetic Properties for Fast Cycling Magnets of SIS100 and SIS300 Rings. – Proceedings of EPAC, Lucerne, Switzerland, 2004, pp. 1741–1743.
8. Shevtsov D.А. et al. Elektrotekhnika – in Russ. (Electrical Engineering), 2022, No. 1, pp. 12–16.
9. Estrokom: elektroizolyatsionnye termostoykie materialy (Estro-kom: Electrical Insulating Heat-Resistant Materials) [Electron. resource], URL: http://xn--j1aeebhfh0g.xn--p1ai/products/polimidnye-plenki/pm-s-tolshchinami-ot-100-mkm.php (Date of appeal 15.05.2023).
10. Shively R., Miller H. Development of a Submerged Winding Induction Generator for Cryogenic Applications. – Conference Record of the 2000 IEEE International Symposium on Electrical Insulation, 2000, pp. 243–246, DOI: 10.1109/ELINSL.2000.845498.
11. Shively R. Submerged Cryogenic Motor Materials Deve-lopment. – IEEE Electrical Insulation Magazine, 2003, vol. 19, No. 3, pp. 7–11, DOI: 10.1109/MEI.2003.1203016.
12. Sápi Z., Butler R. Properties of Cryogenic and Low Tem-perature Composite Materials – A Review. – Cryogenics, 2020, vol. 111, DOI:10.1016/j.cryogenics.2020.103190.
13. Carrier L.N.G. Submerged Electric Motor Pumps for Marine Liquefied Gas Cargo. – World Pump, 1996, September.
14. Rush S., Hall L. Tutorial on Cryogenic Submerged Electric Motor Pumps. – 18th International Pump Users Symposium, 2001, pp. 101–107.
15. James D.R., Sauers I. Electrical Insulation Materials for Superconducting Coil Applications. – IEEE Power Engineering So-ciety General Meeting, 2004, vol.2, pp. 2062–2064, DOI: 10.1109/PES.2004.1373243.
16. GОSТ 11828-86. Mashiny elektricheskie vrashchayushchiesya. Obshchie metody ispytaniy (Rotating Electrical Machines. General Test Methods). М.: IPK Izdatel'stvo standartov, 2003, 32 p.
17. GОSТ 7217-87. Mashiny elektricheskie vrashchayushchiesya. Dvigateli asinhronnye. Metody ispytaniy (Rotating Electrical Machines. Asyncfaronus Motors. Test Methods). М.: IPK Izdatel'stvo standartov, 2003, 41 p.
Published
2023-07-17
Section
Article