Evaluating the Number of 110 kV Power Line Lightning Outages

  • Sergey L. SHISHIGIN
  • Dmitriy S. SHISHIGIN
  • Ivan N. SMIRNOV
Keywords: overhead line, lightning, back flashover, lightning outage, operating voltage, lightning strike at the line tower, lightning strike at the overhead grounding wire

Abstract

The number of lightning outages is the main indicator of the overhead line lightning resistance, which is determined at the design stage by modeling surge processes and surge overvoltages in overhead lines during lightning strikes. Back flashover, which evolves into a short circuit at power frequency, is the main factor causing the tripping of 110 kV overhead lines. The article addresses more accurate evaluation of the number of lightning outages, in which the back flashover probability is evaluated using the dangerous current curve, and the overhead line surge overvoltages are calculated using the theory of grounding conductors. The problem of selecting the wire operating voltage at the lightning strike moment is solved, and its refined value is proposed. The problem of selecting the places of calculated lightning strike points is considered. It is shown that the methodology set out in the IEEE and CIGRE standards, which assumes that the lightning strikes only at the line tower top, and the influence of overhead ground wire is taken into account by a correction factor, is insufficiently accurate. The Russian regulatory document RD 153-34.3-35.125-99 considers a lightning strike at two points: a tower and the overhead ground wire at the span middle; however, the distribution of strikes is determined incorrectly. A new distribution pattern of lightning strikes at the tower and overhead ground wire at a span quarter distance is proposed. Evaluations of the number of 110 kV overhead line lightning outages have been performed. The article also shows the possibility of designing overhead lines with a specified number of lightning outages in areas with high-resistance soil with using a set of lightning protection facilities, including a second overhead ground wire under the overhead line phase wires and grounding counterweights.

Author Biographies

Sergey L. SHISHIGIN

(Vologda State University, Vologda, Russia) – Professor of the Control and Computing Systems Dept., Dr. Sci. (Eng.), Docent.

Dmitriy S. SHISHIGIN

(Vologda State University, Vologda, Russia) – Docent of the Control and Computing Systems Dept., Cand. Sci. (Eng.).

Ivan N. SMIRNOV

(Vologda State University, Vologda, Russia) – Postgraduate Student of the Control and Computing Systems Dept.

References

1. РД 153-34.3-35.125-99. Руководство по защите электрических сетей 6–1150 кВ от грозовых и внутренних перенапряжений. СПб.: ПЭИПК Минтопэнерго РФ, 1999, 353 с.
2. Правила устройства электроустановок. М.: Проспект, 2022, 832 с.
3. Гайворонский А.С. Актуальные проблемы молниезащиты ВЛ 110–500 кВ. – Новости электротехники, 2019, № 1(115), с.18–23.
4. Масин Г. и др. Создание системы автоматизированного проектирования молниезащиты ПС и ВЛ. – Электроэнергия. Передача и распределение, 2022, № S2 (25), с. 30–37.
5. Martinez J.A., Castro-Aranda F. Lightning Performance Analysis of Overhead Transmission Lines Using the EMTP. – IEEE Transactions on Power Delivery, 2005, vol. 20 (3), pp. 2200–2210, DOI:10.1109/TPWRD.2005.848454.
6. Gatta F.M. et al. An ATP-EMTP Monte Carlo Procedure for Backflashover Rate Evaluation. – International Conference on Lightning Protection (ICLP), 2012, DOI: 10.1109/ICLP.2012.6344362.
7. Gomes R.M., Silveira F.H., Visacro S. Influence of the Distribution of Lightning Strikes Along the Span of Transmission Lines on Their Backflashover Rate: The Span Factor. – IEEE Transactions on Power Delivery, 2022, vol. 37, No. 3, pp. 1403–1411, DOI:10.1109/TPWRD.2021.3086406.
8. Шишигин С.Л., Шишигин Д.С., Смирнов И.Н. Расчет грозовых перенапряжений воздушных линий с импульсной короной в цепных схемах. – Известия Российской академии наук. Энергетика, 2022, № 1, с. 47–56.
9. Шишигин С.Л., Шишигин Д.С., Смирнов И.Н. Расчет заземлителей с учетом ионизации и частотных свойств грунта. – Известия Российской академии наук. Энергетика, 2022, № 6, с. 46–63.
10. Шишигин С.Л., Шишигин Д.С., Смирнов И.Н. Вероятность обратного перекрытия изоляции опоры воздушной линии с учетом ионизации и частотных характеристик грунта. – Электричество, 2023, № 2, с. 27–36.
11. Техника высоких напряжений / Под ред. Д.В. Разевига. М.: Энергия, 1976, 488 с.
12. Базуткин В.В. и др. Перенапряжения в электрических системах и защита от них. СПб.: Энергоиздат, 1995, 320 с.
13. IEEE 1410-2010. IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines, 2011, 73 p.
14. CIGRE Brochure 64. Guide to Procedures for Estimating the Lightning Performance of Transmission Lines. WG 33-01, October, 1991, 61 p.
15. Almeida F.S., Silveira F.H., Visacro S. A New Approach for Considering the Effect of the Power-Frequency Voltage on the Calculated Lightning Performance of Transmission Lines. – IEEE Transactions on Power Delivery, 2023, vol. 38 (3), pp: 2141–2148, DOI:10.1109/TPWRD.2023.3235056.
16. Программа «ЗУМ» [Электрон. ресурс], URL: https://zym-emc.ru/zymprogram.html (дата обращения 01.02.23).
#
1. RD 153-34.3-35.125-99. Rukovodstvo po zashchite elektricheskih setey 6–1150 kV ot grozovyh i vnutrennih perenapryazheniy (Guidelines for the Protection of Electrical Networks 6–1150 kV from Lightning and Internal Overvoltages). SPb.: PEIPK Mintopenergo RF, 1999, 353 p.
2. Pravila ustroystva elektroustanovok (Electrical Installation Rules). М.: Prospekt, 2022, 832 p.
3. Gayvoronskiy A.S. Novosti elektrotekhniki – in Russ. (Electrical Engineering News), 2019, No. 1(115), pp.18–23.
4. Маsin G. et al. Elektroenergiya. Peredacha i raspredelenie – in Russ. (Electrical Power. Transmission and Distribution), 2022, No. S2 (25), pp. 30–37.
5. Martinez J.A., Castro-Aranda F. Lightning Performance Analysis of Overhead Transmission Lines Using the EMTP. – IEEE Transactions on Power Delivery, 2005, vol. 20 (3), pp. 2200–2210, DOI:10.1109/TPWRD.2005.848454.
6. Gatta F.M. et al. An ATP-EMTP Monte Carlo Procedure for Backflashover Rate Evaluation. – International Conference on Lightning Protection (ICLP), 2012, DOI: 10.1109/ICLP.2012.6344362.
7. Gomes R.M., Silveira F.H., Visacro S. Influence of the Distribution of Lightning Strikes Along the Span of Transmission Lines on Their Backflashover Rate: The Span Factor. – IEEE Transactions on Power Delivery, 2022, vol. 37, No. 3, pp. 1403–1411, DOI:10.1109/TPWRD.2021.3086406.
8. Shishigin S.L, Shishigin D.S., Smirnov I.N. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Power Engineering), 2022, No. 1, pp. 47–56.
9. Shishigin S.L, Shishigin D.S., Smirnov I.N. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Power Engineering), 2022, No. 6, pp. 46–63.
10. Shishigin S.L, Shishigin D.S., Smirnov I.N. Elektrichestvo – in Russ. (Electricity), 2023, No. 2, pp. 27–36.
11. Tekhnika vysokih napryazheniy (High Voltage Technology) / Ed. by D.V. Razevig. М.: Energiya, 1976, 488 p.
12. Bazutkin V.V. et al. Perenapryazheniya v elektricheskih sistemah i zashchita ot nih (Overvoltage in electrical systems and protection against them). SPb.: Energoizdat, 1995, 320 p.
13. IEEE 1410-2010. IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines, 2011, 73 p.
14. CIGRE Brochure 64. Guide to Procedures for Estimating the Lightning Performance of Transmission Lines. WG 33-01, October, 1991, 61 p.
15. Almeida F.S., Silveira F.H., Visacro S. A New Approach for Considering the Effect of the Power-Frequency Voltage on the Calculated Lightning Performance of Transmission Lines. – IEEE Transactions on Power Delivery, 2023, vol. 38 (3), pp: 2141–2148, DOI:10.1109/TPWRD.2023.3235056.
16. Programma «ZUM» (The ZYM program) [Electron. resource], URL: https://zym-emc.ru/zymprogram.html (Date of appeal 01.02.23)
Published
2023-07-17
Section
Article