Engineering Feasibility Studies and Designing of Energy Systems Based on Renewable Energy Sources for Difficult Natural and Climatic Conditions

  • Viktor V. ELISTRATOV
Keywords: renewable energy sources, wind-diesel power plant, intelligent control, wind energy resources, energy and economic efficiency, adaptation to the conditions of the north, modular foundation, digital design

Abstract

The article analyzes the long-term experience gained at the Scientific and Educational Center "Renewable Energy Sources" (SEC "RES") of Peter the Great St. Petersburg Polytechnic University in scientific, technical and regime justification, design and construction of hybrid energy systems on the basis of renewable energy sources. The team of SEC “RES” specialists headed by the author has developed a hierarchically subordinate and functionally integrated methodology for optimal parametric and regime substantiation of the parameters of power supply systems for isolated consumers for northern and arctic territories, converting, storage equipment, control systems for energy systems of medium power capacity. The methodology developed is aimed at using fossil and renewable energy sources in power supply systems based on system efficiency and maximizing the replacement of fossil fuels. The features of assessment and forecasting of renewable energy resources at the energy system location places under the conditions of limited meteorological and natural-climatic information are considered and studied in detail. The principles of design and construction of wind farms are proposed and justified taking into account adaptation measures for arctic conditions, transport and logistics problems of delivery and installation of equipment. A methodology has been developed for assessing the efficiency and investment attractiveness of energy system projects based on systemic effects and integrated criteria with taking into account the legal and economic environment of construction regions.

Author Biography

Viktor V. ELISTRATOV

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) – Professor of Higher School of Hidraulic and Power Engineering., Director of the Scientific and Educational Center "Renewable Energy Sources", Dr. Sci. (Eng.), Professor.

References

1. Elistratov V., Denisov R., Konishchev M. Reducing the Arctic Carbon Footprint through Low-Carbon Technologies and Wind Power Plants. – The 2nd International Scientific Conference «Ecosystems without Borders–2021», 2022, 2636, 050004, DOI: 10.1063/5.0104405.
2. Елистратов В.В. Энергоснабжение в Арктике с использованием ВИЭ. – Neftegas.Ru, 2023, № 1(133), с. 74–79.
3. Елистратов В.В. Развитие энергоснабжения поселений в Арктических регионах с использованием возобновляемых источников энергии. – В кн. Арктическое пространство России в XXI веке: факторы развития, организация управления. СПб.: ООО Издательский дом «Наука», 2016, с. 936–952.
4. Елистратов В.В., Кудряшева И.Г. Режимы работы установок и энергокомплексов на основе возобновляемых видов энергии. СПб.: ПОЛИТЕХ-ПРЕСС, 2021, 157 с.
5. Elistratov V. Energy Supply of Autonomous Territories Based on Renewable Energy Sources. – 7th International Conference on Energy Efficiency and Agricultural Engineering, 2020, DOI:10.1109/EEAE49144.2020.9279083.
6. Елистратов В.В. Возобновляемая энергетика. СПб.: Изд-во политехнического ун-та, 2016, 424 с.
7. Дюльдин М.В., Елистратов В.В. Оценка ветроэнергетических ресурсов в условиях ограниченной природно-климатической информации. – Труды Кубанского государственного аграрного университета, 2017, вып. 1(64), с. 227–233.
8. Elistratov V.V., Bogun I.V., Kasina V.I. Development of a Geoinformation System for the Design of Wind Power Facilities in the Russian Arctic Conditions. – 4th International Scientific Conference “Arctic: History and Modernity”, 2019, vol. 302 (1), DOI:10.1088/1755-1315/302/1/012064.
9. Елистратов В.В. и др. Использование ГИС-технологий при проектировании ВДЭС в северных условиях. – Сантехника, отопление, кондиционирование, 2021, № 10, с. 66–71.
10. Елистратов В.В., Панфилов А.А. Особенности проектирования фундаментов ветроэнергетических установок в условиях вечной мерзлоты. – Полярная механика, 2016, № 3, с. 599–609.
11. Saha S. et al. The NCEP Climate Forecast System Reanalysis. – Bulletin of the American Meteorological Society, 2010, 91(8), pp. 1015–1057, DOI:10.1175/2010BAMS3001.1.
12. WAsP CFD in WindPRO. Energy calculations with CFD [Электрон. ресурс], URL: http://www.emd.dk/files/windpro2.9/WindPRO_and_WAsPCFD.pdf (дата обращения 01.07.2023).
13. Мыльников Д.Ю. Геоинформационные платформы [Электрон. ресурс], URL: https://www.politerm.com/articles/obzor_gis.pdf (дата обращения 01.07.2023).
14. GIS-LAB. Веб-ГИС [Электрон. ресурс], URL: https://gis-lab.info/qa/webgis.html (дата обращения 01.07.2023).
15. Photovoltaic Geographical Information System [Электрон. ресурс], URL: https://ec.europa.eu/jrc/en/pvgis. (дата обращения 01.07.2023).
16. Elistratov V.V. et al. The Application of Adapted Materials and Technologies to Create Energy Systems Based on Renewable Energy Sources under Harsh Climatic Conditions. – Applied Solar Energy, 2018, 54(6), pp. 472–476, DOI:10.3103/S0003701X18060087.
17. Пат. RU 207608 U1. Универсальный модульный фундамент арктической ветроэлектрической установки / В.В. Елистратов, А.А. Панфилов, С.Г. Петров, 2021.
18. Ingram G. Wind Turbine Blade Analysis Using the Blade Element Momentum Method. Version 1.1, 2011. [Электрон. ресурс]. URL: https://pdfslide.net/documents/wind-turbine-blade-analysis-using-the-blade-element-momentum-.html?page=1 (дата обращения 01.07.2023).
19. Design and Shape Optimization of a Wind Turbine Blade [Электрон. ресурс], URL: htps://www.pseven.io/blog/use-cases/design-and-optimization-of-wind-turbine-blade.html (дата обращения 01.07.2023).
20. Shahrbabak A.P., Dehghan M., Rahgozar S. Genetic Algo-rithms for the Design and Optimization of Horizontal Axis Wind Turbine (HAWT) Blades: A Continuous Approach or a Binary One? – Sustainable Energy Technologies and Assessments, 2021, vol. 44(10), DOI: 10.1016/j.seta.2021.101022.
21. Давыдов И.С. и др. Разработка оптимального профиля лопасти для ветрогенератора, предназначенного для применения в области переменных ветров. – Математические методы в технике и технологиях, 2019, т. 12, № 1, с. 228–231.
22. Liu Y. et al. Modeling, Planning, Application and Management of Energy Systems for Isolated Areas: A Review. – Renewable and Sustainable Energy Reviews, 2018, 82, рр. 460–470, DOI: 10.1016/j.rser.2017.09.063.
23. Lambert T., Gilman P., Lilienthal P. Micropower System Modelling with HOMER. – Integration of Alternative Sources of Energy, John Wiley & Sons, 2006, рр. 379-418.
24. IEA Wind TCP. Task 19. Wind Energy in Cold Climates [Электрон. ресурс], URL: https://iea-wind.org/task19 (дата обращения 01.07.2023).
25. Battisti L. Wind Turbines in Cold Climates: Icing Impacts and Mitigation Systems, Springer, 2015, 355 р.
26. Tammelin B., Seifert H. Large Wind Turbines Go into Cold Climate Regions. – EWEC, 2001.
27. ISO-12494:2001. Atmospheric Icing of Structures. Geneva: ISO Copyright Office, 2001, 56 р.
28. Parent O., Ilinca A. Anti-Icing and De-Icing Techniques for Wind Turbines: Critical Review. – Cold Regions Science and Technology, 2011, No. 65, pp 88–96, DOI:10.1016/j.coldregions.2010.01.005.
29. Руководство по проектированию оснований и фундаментов на вечномерзлых грунтах. М.: Стройиздат, 1980.
30. Елистратов В.В. и др. Арктическая ветродизельная электростанция с интеллектуальной системой управления. – Электричество, 2022, № 2, с. 29–37.
31. Elistratov V. et al. Study of the Intelligent Control and Modes of the Arctic-Adopted Wind–Diesel Hybrid System. – Energies, 2021, 14(14), 4188, DOI: 10.3390/en14144188.
32. Ansari M.M.T., Sangoden V. DMLHFLC (Dual Mode Linguistic Hedge Fuzzy Logic Controller) for an Isolated Wind-Diesel Hybrid Power System with BES (Battery Energy Storage) Unit. – Energy, 2010, 35(9), pp. 3827–3837, DOI:10.1016/j.energy.2010.05.037.
33. Vachirasricirikul S., Ngamroo I., Kaitwanidvilai S. Coordinated SVC and AVR for Robust Voltage Control in a Hybrid Wind-Diesel System. – Energy Conversion and Management, 2010, 51, pp. 2383–2393, DOI:10.1016/j.enconman.2010.05.001.
34. Shukur O.B., Lee M.H. Daily Wind Speed Forecasting Through Hybrid KF-ANN model based on ARIMA. – Renewable Energy, 2015, 76, pp. 637–647, DOI:10.1016/j.renene.2014.11.084.
35. Aasim, Singh S.N., Mohapatra A. Repeated Wavelet Transform Based ARIMA Model for Very Short-Term Wind Speed Forecasting. – Renewable Energy, 2019,136, pp. 758–768, DOI:10.1016/j.renene.2019.01.031.
36. D’Amico G. et al. Managing Wind Power Generation via Indexed Semi-Markov Model and Copula. – Energies, 2020, 13, 4246, DOI:10.3390/en13164246.
37. Santhosh M., Venkaiah C., Vinod Kumar D.M. Ensemble Empirical Mode Decomposition Based Adaptive Wavelet Neural Network Method for Wind Speed Prediction. – Energy Conversion and Management, 2018, 168, pp. 482– 493, DOI:10.1016/j.encon-man.2018.04.099.
38. Elistratov V.V., Denisov R.S. Optimization of Hybrid Systems 'Operating Modes Based on Renewable Energy. – 16th Conference on Electrical Machines, Drives and Power Systems, ELMA, 2019, 8771684, DOI: 10.1109/ELMA.2019.8771684.
39. Projected Costs of Generating Electricity 2020 [Электрон. ресурс], URL: https://www.iea.org/reports/projected-costs-of-generating-electricity-2020 (дата обращения 01.07.2023).
40. Kazem H.A. et al. Optimum Design and Evaluation of Hybrid Solar/Wind/Diesel Power System for Masirah Island. – Environment, Development and Sustainability, 2017, 19 (5), pp. 1761–1778, DOI:10.1007/s10668-016-9828-1.
41. Копылов А.Е. Экономика ВИЭ. М.: Грифон, 2015, 364 с.
42. Современная рыночная электроэнергетика Российской Федерации / под ред. О.Г. Баркина. М.: Перо, 2017, 530 с.
43. Елистратов В.В., Кудряшева И.Г. Разработка принципов комплексного подхода к определению эффективности ветро-дизельных энергетических комплексов автономного энергоснабжения. – Электрические станции, 2015, № 10, с. 38–42.
44. Елистратов В.В. и др. Ресурсы и технологии использования возобновляемых источников энергии. СПб.: ПОЛИТЕХ-ПРЕСС, 2022, 528 с.
#
1. Elistratov V., Denisov R., Konishchev M. Reducing the Arctic Carbon Footprint through Low-Carbon Technologies and Wind Power Plants. – The 2nd International Scientific Conference «Ecosystems without Borders–2021», 2022, 2636, 050004, DOI: 10.1063/5.0104405.
2. Elistratov V.V. Neftegas.Ru, 2023, No. 1(133), pp. 74–79.
3. Elistratov V.V. Arkticheskoe prostranstvo Rossii v XXI veke: faktory razvitiya, organizatsiya upravleniya – in Russ. (The Arctic Space of Russia in the XXI Century: Development Factors, Management Organization). SPb.: ООО Izdatel'skiy dom «Nauka», 2016, pp. 936–952.
4. Elistratov V.V., Kudryashcheva I.G. Rezhimy raboty ustanovok i energokompleksov na osnove vozobnovlyaemyh vidov energii (Modes of Operation of Installations and Power Complexes Based on Renewable Energy). SPb.: POLITEKH-PRESS, 2021, 157 p.
5. Elistratov V. Energy Supply of Autonomous Territories Based on Renewable Energy Sources. – 7th International Conference on Energy Efficiency and Agricultural Engineering, 2020, DOI:10.1109/EEAE49144.2020.9279083.
6. Elistratov V.V. Vozobnovlyaemaya energetika (Renewable Ener-gy) SPb.: Izd-vo politekhnicheskogo un-ta, 2016, 424 p.
7. Dyul'din M.V., Elistratov V.V. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta – in Russ. (Proceedings of the Kuban State Agrarian University), 2017, iss. 1(64), pp. 227–233.
8. Elistratov V.V., Bogun I.V., Kasina V.I. Development of a Geoinformation System for the Design of Wind Power Facilities in the Russian Arctic Conditions. – 4th International Scientific Conference “Arctic: History and Modernity”, 2019, vol. 302 (1), DOI:10.1088/1755-1315/302/1/012064.
9. Elistratov V.V. et al. Santekhnika, otoplenie, konditsionirova-nie – in Russ. (Plumbing, Heating, Air Conditioning), 2021, No. 10, pp. 66–71.
10. Elistratov V.V., Panfilov А.А. Polyarnaya mekhanika – in Russ. (Polar Mechanics), 2016, No. 3, pp. 599–609.
11. Saha S. et al. The NCEP Climate Forecast System Reanalysis. – Bulletin of the American Meteorological Society, 2010, 91(8),
pp. 1015–1057, DOI:10.1175/2010BAMS3001.1.
12. WAsP CFD in WindPRO. Energy calculations with CFD [Electron. resource], URL: http://www.emd.dk/files/windpro2.9/Wind-PRO_and_WAsPCFD.pdf (Date of appeal 01.07.2023).
13. Myl'nikov D.Yu. Geoinformatsionnye platformy (Geoinformation Platforms) [Electron. resource], URL: https://www.politerm.com/articles/obzor_gis.pdf (Date of appeal 01.07.2023).
14. GIS-LAB. Web GIS [Electron. resource], URL: https://gis-lab.info/qa/webgis.html (Date of appeal 01.07.2023).
15. Photovoltaic Geographical Information System [Electron. resource], URL: https://ec.europa.eu/jrc/en/pvgis. (Date of appeal 01.07.2023).
16. Elistratov V.V. et al. The Application of Adapted Materials and Technologies to Create Energy Systems Based on Renewable Energy Sources under Harsh Climatic Conditions. – Applied Solar Energy, 2018, 54(6), pp. 472–476, DOI:10.3103/S0003701X18060087.
17. Pаt. RU 207608 U1. Universal'nyy modul'nyy fundament arkticheskoy vetroelektricheskoy ustanovki (Universal Modular Foundation of the Arctic Wind Power Plant) / V.V. Elistratov, A.A. Pan-filov, S.G. Petrov, 2021.
18. Ingram G. Wind Turbine Blade Analysis Using the Blade Element Momentum Method. Version 1.1, 2011. [Electron. resource]. URL: https://pdfslide.net/documents/wind-turbine-blade-analysis-using-the-blade-element-momentum-.html?page=1 (Date of appeal 01.07.2023).
19. Design and Shape Optimization of a Wind Turbine Blade [Electron. resource], URL: htps://www.pseven.io/blog/use-cases/de-sign-and-optimization-of-wind-turbine-blade.html (Date of appeal 01.07.2023).
20. Shahrbabak A.P., Dehghan M., Rahgozar S. Genetic Algorithms for the Design and Optimization of Horizontal Axis Wind Turbine (HAWT) Blades: A Continuous Approach or a Binary One? – Sustainable Energy Technologies and Assessments, 2021, vol. 44(10), DOI: 10.1016/j.seta.2021.101022.
21. Davydov I.S. et al. Matematicheskie metody v tekhnike i tekhnologiyah – in Russ. (Mathematical Methods in Engineering and Technology), 2019, vol. 12. No. 1. pp. 228–231.
22. Liu Y. et al. Modeling, Planning, Application and Management of Energy Systems for Isolated Areas: A Review. – Renewable and Sustainable Energy Reviews, 2018, 82, рр. 460–470, DOI: 10.1016/j.rser.2017.09.063.
23. Lambert T., Gilman P., Lilienthal P. Micropower System Modelling with HOMER. – Integration of Alternative Sources of Energy, John Wiley & Sons, 2006, рр. 379-418.
24. IEA Wind TCP. Task 19. Wind Energy in Cold Climates [Electron. resource], URL: https://iea-wind.org/task19 (Date of appeal 01.07.2023).
25. Battisti L. Wind Turbines in Cold Climates: Icing Impacts and Mitigation Systems, Springer, 2015, 355 р.
26. Tammelin B., Seifert H. Large Wind Turbines Go into Cold Climate Regions. – EWEC, 2001.
27. ISO-12494:2001. Atmospheric Icing of Structures. Geneva: ISO Copyright Office, 2001, 56 р.
28. Parent O., Ilinca A. Anti-Icing and De-Icing Techniques for Wind Turbines: Critical Review. – Cold Regions Science and Technology, 2011, No. 65, pp 88–96, DOI:10.1016/j.coldregions.2010.01.005.
29. Rukovodstvo po proektirovaniyu osnovaniy i fundamentov na vechnomerzlyh gruntah (Guidelines for the Design of Foundations and Foundations on Permafrost Soils). M.: Stroyizdat, 1980.
30. Elistratov V.V. et al. Elektrichestvo – in Russ. (Electricity), 2022, No. 2, pp. 29–37.
31. Elistratov V. et al. Study of the Intelligent Control and Modes of the Arctic-Adopted Wind–Diesel Hybrid System. – Energies, 2021, 14(14), 4188, DOI: 10.3390/en14144188.
32. Ansari M.M.T., Sangoden V. DMLHFLC (Dual Mode Linguistic Hedge Fuzzy Logic Controller) for an Isolated Wind-Diesel Hybrid Power System with BES (Battery Energy Storage) Unit. – Ener-gy, 2010, 35(9), pp. 3827–3837, DOI:10.1016/j.energy.2010.05.037.
33. Vachirasricirikul S., Ngamroo I., Kaitwanidvilai S. Coordinated SVC and AVR for Robust Voltage Control in a Hybrid Wind-Diesel System. – Energy Conversion and Management, 2010, 51, pp. 2383–2393, DOI:10.1016/j.enconman.2010.05.001.
34. Shukur O.B., Lee M.H. Daily Wind Speed Forecasting Through Hybrid KF-ANN model based on ARIMA. – Renewable Energy, 2015, 76, pp. 637–647, DOI:10.1016/j.renene.2014.11.084.
35. Aasim, Singh S.N., Mohapatra A. Repeated Wavelet Transform Based ARIMA Model for Very Short-Term Wind Speed Forecasting. – Renewable Energy, 2019,136, pp. 758–768, DOI:10.1016/j.renene.2019.01.031.
36. D’Amico G. et al. Managing Wind Power Generation via Indexed Semi-Markov Model and Copula. – Energies, 2020, 13, 4246, DOI:10.3390/en13164246.
37. Santhosh M., Venkaiah C., Vinod Kumar D.M. Ensemble Empirical Mode Decomposition Based Adaptive Wavelet Neural Network Method for Wind Speed Prediction. – Energy Conversion and Management, 2018, 168, pp. 482– 493, DOI:10.1016/j.encon-man.2018.04.099.
38. Elistratov V.V., Denisov R.S. Optimization of Hybrid Systems 'Operating Modes Based on Renewable Energy. – 16th Conference on Electrical Machines, Drives and Power Systems, ELMA, 2019, 8771684, DOI: 10.1109/ELMA.2019.8771684.
39. Projected Costs of Generating Electricity 2020 [Electron. resource], URL: https://www.iea.org/reports/projected-costs-of-gene-rating-electricity-2020 (Date of appeal 01.07.2023).
40. Kazem H.A. et al. Optimum Design and Evaluation of Hybrid Solar/Wind/Diesel Power System for Masirah Island. – Environment, Development and Sustainability, 2017, 19 (5), pp. 1761–1778, DOI:10.1007/s10668-016-9828-1.
41. Kopylov A.E. Ekonomika VIE (Economics of RES). М.: Grifon, 2015, 364 p.
42. Sovremennaya rynochnaya elektroenergetika Rossiyskoy Federatsii (Modern Market Electric Power Industry of the Russian Federation)/ Ed. by O.G. Barkin. М.: Pero, 2017, 530 p.
43. Elistratov V.V., Kudryasheva I.G. Elektricheskie stantsii – in Russ. (Power Plants), 2015, No. 10, pp. 38–42.
44. Elistratov V.V. et al. Resursy i tekhnologii ispol'zovaniya vozobnovlyaemyh istochnikov energii (Resources and Technologies for the Use of Renewable Energy Sources). SPb.: POLITEKH-PRESS, 2022, 528 p.
Published
2023-08-31
Section
Article