On the Use of High-inductive Sensors for Partial Discharge Signals Measurement by the Electrical Method in the Factory Test Environment

  • Anton V. ZHUYKOV
  • Polina A. KOLPAKOVA
  • Daniil A. MATVEEV
  • Ilya I. NIKULOV
  • Mikhail V. FROLOV
Keywords: partial discharges, electrical method of PD measurement, inductive sensor, high-voltage tests

Abstract

The article discusses theoretical and methodological aspects of implementing a test setup for partial discharge (PD) measurements in a factory test environment with application of high-inductive sensors based on the voltage transformer principle. The main advantages of this approach are the ability to detune the PD sensor signal from high-frequency noise and the relatively low frequency of the sensor oscillatory response, which simplifies the requirements for the analog-to-digital converter (ADC) and provides error-free calibration. Factors affecting the test setup sensitivity are analyzed considering stray capacitances of the high-voltage circuit and the measuring circuit with respect to the sensor secondary winding. It is shown that the sensor magnetization and leakage inductances do not affect the test setup sensitivity, due to which they can be used to obtain the desired sensor oscillatory response frequency by varying the ferrite core dimensions and turn numbers of the primary and secondary windings. The optimal design parameters of the sensors in the cases of using the ADC low- and high-impedance inputs are studied. The origin of the sensor’s double-frequency response both during calibration and PD measurements is explained. Signal filtering methods are proposed, which, together with using high-inductive sensors, provide the ability to measure PD with an apparent charge of 1 pC in factory test environment.

Author Biographies

Anton V. ZHUYKOV

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Engineer of the High Voltage Engineering and Electrophysics Dept., Cand. Sci. (Eng.)

Polina A. KOLPAKOVA

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Engineer of the High Voltage Engineering and Electrophysics Dept

Daniil A. MATVEEV

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Researcher of the High Voltage Engineering and Electrophysics Dept.

Ilya I. NIKULOV

(AO "Ramenskiy Elektrotekhnicheskiy Zavod Energiya", Ramenskoe, Moscow region, Russia) – Technical Director.

Mikhail V. FROLOV

(National Research University "Moscow Power Engineering Institute", Moscow, Russia) – Postgraduate Student, Engineer of the High Voltage Engineering and Electrophysics Dept.

References

1. Коробейников С.М., Овсянников А.Г. Физические механизмы частичных разрядов. Новосибирск: НГТУ, 2021, 266 с.
2. Вдовико В.П. Частичные разряды в диагностировании высоковольтного оборудования. Новосибирск: Наука, 2007, 155 с.
3. Русов В.А. Измерение частичных разрядов в изоляции высоковольтного оборудования. Екатеринбург: УрГУПС, 2011, 370 с.
4. CIGRE Technical Brochure No. 366. Guide for Partial Discharge Measurements in Compliance to IEC 60270, 2008, 56 p.
5. CIGRE Technical Brochure No. 662. Guidelines for Partial Discharge Detection Using Conventional (IEC 60270) and Unconventional Methods, 2016, 115 p.
6. CIGRE Technical Brochure No. 676. Partial Discharges in Transformers, 2017, 162 p.
7. ГОСТ Р 55191-2012 (МЭК 60270:2000). Методы испытаний высоким напряжением. Измерения частичных разрядов. М.: Стандартинформ, 2014, 47 c.
8. IEC 60270:2000+AMD1:2015. High-Voltage Test Techniques – Partial Discharge Measurements, 2015, 226 p.
9. Paophan B., Kunakorn A., Yutthagowith P. Partial Discharge Measurement Based on an Inductive Mode Air Core Sensor. – Journal of Electrical Engineering & Technology, 2020, vol. 15, pp. 773–785, DOI: 10.1007/s42835-020-00376-y.
10. Klüss J.V., Elg A.-P., Wingqvist C. High-Frequency Current Transformer Design and Implementation Considerations for Wideband Partial Discharge Applications. – IEEE Transactions on Instrumentation and Measurement, 2021, vol. 25, No. 1, DOI: 10.1109/TIM.2021.3052002.
11. Fritsch M., Wolter M. High-Frequency Current Transformer Design and Construction Guide. – IEEE Transactions on Instrumentation and Measurement, 2022, vol. 71, DOI: 10.1109/TIM.2022.3177189.
12. Жуйков А.В. и др. Высокочастотные модели индуктивных датчиков для регистрации частичных разрядов в изоляции электрооборудования. – Электротехника, № 4, 2023, с. 39–46.
13. Жуйков А.В. и др. Исследование частотных характеристик индуктивных датчиков в схемах измерения частичных разрядов. – Электричество, 2023, № 7, с. 35–46.
14. Калантаров П.Л, Цейтлин Л.А. Расчет индуктивностей: Справочная книга. Л.: Энергоатомиздат, 1986, 488 c.
15. Смит С. Цифровая обработка сигналов. Практическое руководство для инженерных и научных работников. М.: Додэка-XXI, 2012, 720 c.
---
Исследование выполнено за счет гранта Российского научного фонда № 23-29-00934, https://rscf.ru/project/23-29-00934.
#
1. Korobeynikov S.M., Ovsyannikov A.G. Fizicheskie mekhanizmy chastichnyh razryadov (Physical Mechanisms of Partial Dis-charges). Novosibirsk: NGTU, 2021, 266 p.
2. Vdoviko V.P. Chastichnye razryady v diagnostirovanii vysokovol'tnogo oborudovaniya (Partial Discharges in the Diagnosis of High-Voltage Equipment). Novosibirsk: Nauka, 2007, 155 p.
3. Rusov V.А. Izmerenie chastichnyh razryadov v izolyatsii vysokovol'tnogo oborudovaniya (Measurement of Partial Discharges in the Insulation of High-Voltage Equipment). Ekaterinburg: UrGUPS, 2011, 370 p.
4. CIGRE Technical Brochure No. 366. Guide for Partial Discharge Measurements in Compliance to IEC 60270, 2008, 56 p.
5. CIGRE Technical Brochure No. 662. Guidelines for Partial Discharge Detection Using Conventional (IEC 60270) and Unconventional Methods, 2016, 115 p.
6. CIGRE Technical Brochure No. 676. Partial Discharges in Transformers, 2017, 162 p.
7. GОSТ R 55191-2012 (МEК 60270:2000). Metody ispytaniy vysokim napryazheniem. Izmereniya chastichnyh razryadov (High Voltage Test Techniques. Partial Discharge Measurements). М.: Standartinform, 2014, 47 p.
8. IEC 60270:2000+AMD1:2015. High-Voltage Test Techniques – Partial Discharge Measurements, 2015, 226 p.
9. Paophan B., Kunakorn A., Yutthagowith P. Partial Discharge Measurement Based on an Inductive Mode Air Core Sensor. – Journal of Electrical Engineering & Technology, 2020, vol. 15, pp. 773–785, DOI: 10.1007/s42835-020-00376-y.
10. Klüss J.V., Elg A.-P., Wingqvist C. High-Frequency Current Transformer Design and Implementation Considerations for Wideband Partial Discharge Applications. – IEEE Transactions on Instrumentation and Measurement, 2021, vol. 25, No. 1, DOI: 10.1109/TIM.2021.3052002.
11. Fritsch M., Wolter M. High-Frequency Current Transformer Design and Construction Guide. – IEEE Transactions on Instrumentation and Measurement, 2022, vol. 71, DOI: 10.1109/TIM.2022.3177189.
12. Zhuykov A.V. et al. Elektrotekhnika – in Russ. (Electrical Engineering), 2023, No. 4, pp. 39–46.
13. Zhuykov A.V. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 7, pp. 35–46.
14. Kalantarov P.L, Tseitlin L.A. Raschet induktivnostei: Spravochnaya kniga (Calculation of Inductances: Reference book). L.: Energoatomizdat, 1986, 488 p.
15. Smit S. Tsifrovaya obrabotka signalov. Prakticheskoe rukovodstvo dlya inzhenernykh i nauchnykh rabotnikov (Digital Signal Processing. A Practical Guide for Engineers and Scientists). М.: Dodeka-XXI, 2012, 720 p
---
The study was financially supported by the Russian Science Foundation, grant no. 23-29-00934, https://rscf.ru/project/23-29-00934
Published
2023-09-18
Section
Article