High-Frequency Pulsed Induction Hardening of Steel Workpieces

  • Sergio LUPI
  • Michele FORZAN
  • Alexandr I. ALIFEROV
Keywords: high-frequency pulsed induction surface hardening, penetration depth, FLUX, austenization, ELTA

Abstract

In the late 20th century, a number of studies were carried out, which made it possible to develop high-frequency pulsed induction surface hardening systems. Such systems showed advantages over high-frequency induction surface hardening by means of a sinusoidal alternating electromagnetic field. However, the pulsed technology was implemented for hardened surfaces of a small size (up to a few tens of cm2). The results of the study presented in the article taken in combination with the capabilities of modern high-frequency generators with an output power of up to 3 MW make it possible to increase the hardened layer area to several hundred cm2. The article presents nomographic charts for deriving approximate values of the parameters of high-frequency pulsed hardening of steel workpiece surfaces. The possibilities of using these nomographic charts for stating 2D simulation problems are shown. The results of calculating the hardening process parameters on a 2D model are obtained. By using the nomographic charts, the input data for this model were formed, and the high-frequency pulsed hardening modes were determined as applied to infinitely long inductor-workpiece systems, as well as for finite-size systems. A comparison of the numerical study results with the experimental data has shown their good agreement with each other.

Author Biographies

Sergio LUPI

(University of Padova, Padova, Italy) – Professor.

Michele FORZAN

(University of Padova, Padova, Italy) – Professor.

Alexandr I. ALIFEROV

(Novosibirsk State Technical University, Novosibirsk, Russia) – Head of the Automated Electrotechnological Installations Dept., Dr. Sci. (Eng.), Professor.

References

1. Aliferov A., Lupi S., Forzan M. Milliseconds Pulse Induction Hardening. – International Journal of Microstructure and Materials Properties, 2018, 13(1/2):73, DOI:10.1504/IJMMP.2018.10014735.
2. Жуков М.Ф. и др. Упрочнение деталей теплоэнергетического оборудования методом высокочастотной импульсной закалки. – Теплоэнергетика, 1996, № 12, с. 25–27.
3. Жуков М.Ф. и др. Высокочастотная импульсная закалка сталей. – Физико-химическая обработка материалов, 1994, т. 6, с. 98–108.
4. Wang Y. et al. Electropulsing assisted aging with ultrafast hardening rate for AerMet100 . – Materials Science and Engineering A, 2022, vol. 841, 143066.
5. Hao J.Q. et al. Accelerated Carbon Atoms Diffusion in Bearing Steel Using Electropulsing to Reduce Spheroidization Processing Time and Improve Microstructure Uniformity. – Steel Research International, 2020, 91 (7), DOI:10.1002/srin.202000041.
6. Zhang J. et al. Microstructure and Mechanical Property of Electropulsing Tempered Ultrafine Grained 42CrMo Steel. – Materials Science and Engineering A, 2020, 782(1), 139213, DOI: 10.1016/j.msea.2020.139213.
7. Liu X., Zhang X. An Ultrafast Performance Regeneration of Aged Stainless Steel by Pulsed Electric Current. – Scripta Materialia, 2018, 153, pp. 86–89, DOI: 10.1016/j.scriptamat.2018.05.004.
8. Shchukin V.G., Popov V.N. Solidification of the metal modified after pulsed induction heating of the surface layer. – Russian Metallurgy (Metally), 2022, No. 9, pp. 1072–1081, DOI:10.1134/S0036029522090130.
9. Щукин В.Г., Попов В.Н., Шмагунов О.А. Моделирование кристаллизации в поверхностном слое металла, модифицированном наночастицами при импульсном индукционном нагреве. – Прикладная механика и техническая физика, 2022, т. 63, № 4 (374), c. 27–38.
10. Попов В.Н., Щукин В.Г., Бойко О.А. Численное моделирование теплофизических процессов модифицирования поверхностного слоя металла при индукционном нагреве. – Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение, 2018, № 2 (119), c. 114–125.
11. Попов В.Н., Черепанов А.Н., Щукин В.Г. Моделирование модифицирования поверхностного слоя металла наночастицами при импульсном индукционном нагреве. – Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2018, № 2 (77), с. 82–96.
12. Сербинович С.И., Щукин В.Г., Марусин В.В. Влияние динамики тепловыделения на микротвердость поверхностного слоя стали при высокочастотной импульсной обработке. – Теплофизика и аэромеханика, 2003, № 3, c. 457–464.
13. Щукин В.Г., Марусин В.В. Моделирование энергопоглащения в стали при обработке мощными высокочастотными импульсами разной частоты. – Прикладная и теоретическая физика, 2004, т. 45, № 6, c. 154–168.
14. Марусин В.В. Высокочастотная импульсная закалка деталей. – Обработка металлов, 2004, № 2, c. 14–15.
15. Щукин В.Г., Марусин В.В. Моделирование процесса формирования упрочненного слоя при обработке углеродистой стали движущимся источником импульсного электромагнитного поля. – Новые материалы и технологии в машиностроении, 2007, № 7, c. 161–167.
16. Crepaz G. et al. High-Frequency Induction Hardening with Controlled Capacitors-Discharge Pulse-Operation Processes. – Transactions on Industry Applications, 1986, DOI:10.1109/TIA.1986. 4504706.
17. Biasutti F., Krause C. Experimental investigation of process parameters on contour induction hardening of gears’, HES-10 Heating by Electromagnetic Sources, 201018-21 May, Padua, Italy, pp.189–199.
18. Bykovsky V.N., Aliferov A.I. Pulse Induction Surface Hardening of Steel Blanks. –The Science. Technologies. Innovations, 2019, part 5, pp. 19–22.
19. Алиферов А., Лупи С. Электроконтактный нагрев металлов. Новосибирск: Изд-во НГТУ, 2004, 224 с.
#
1. Aliferov A., Lupi S., Forzan M. Milliseconds Pulse Induction Hardening. – International Journal of Microstructure and Materials Properties, 2018, 13(1/2):73, DOI:10.1504/IJMMP.2018.10014735.
2. Zhukov M.F. et al. Teploenergetika – in Russ. (Thermal Power Engineering), 1996, No. 12, pp. 25–27.
3. Zhukov M.F. et al. Fiziko-himicheskaya obrabotka materialov – in Russ. (Physical and Chemical Processing of Materials), 1994, vol. 6, pp. 98–108.
4. Wang Y. et al. Electropulsing assisted aging with ultrafast hardening rate for AerMet100 . – Materials Science and Engineering A, 2022, vol. 841, 143066.
5. Hao J.Q. et al. Accelerated Carbon Atoms Diffusion in Bearing Steel Using Electropulsing to Reduce Spheroidization Processing Time and Improve Microstructure Uniformity. – Steel Research International, 2020, 91 (7), DOI:10.1002/srin.202000041.
6. Zhang J. et al. Microstructure and Mechanical Property of Electropulsing Tempered Ultrafine Grained 42CrMo Steel. – Materials Science and Engineering A, 2020, 782(1), 139213, DOI: 10.1016/j.msea.2020.139213.
7. Liu X., Zhang X. An Ultrafast Performance Regeneration of Aged Stainless Steel by Pulsed Electric Current. – Scripta Materialia, 2018, 153, pp. 86–89, DOI: 10.1016/j.scriptamat.2018.05.004.
8. Shchukin V.G., Popov V.N. Solidification of the metal modified after pulsed induction heating of the surface layer. – Russian Metallurgy (Metally), 2022, No. 9, pp. 1072–1081, DOI:10.1134/S0036029522090130.
9. Shchukin V.G., Popov V.N., Shmagunov О.А. Prikladnaya mekhanika i tekhnicheskaya fizika – in Russ. (Applied Mechanics and Technical Physics), 2022, vol. 63, No. 4 (374), pp. 27–38.
10. Popov V.N., Shchukin V.G., Boyko О.А. Vestnik MGTUim. N.E. Baumana. Ser. Mashinostroenie – in Russ. (Bulletin of the Bauman Moscow State Technical University. Mechanical Engineering Series), 2018, No. 2 (119), pp. 114–125.
11. Popov V.N., Cherepanov A.N., Shchukin V.G. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki – in Russ. (Bulletin of the Bauman Moscow State Technical University. Natural Sciences Series), 2018, No. 2 (77), pp. 82–96.
12. Serbinovich S.I., Shchukin V.G., Marusin V.V. Teplofizika i aeromekhanika – in Russ. (Thermophysics and Aeromechanics), 2003, No. 3, pp. 457–464.
13. Shchukin V.G., Marusin V.V. Prikladnaya i teoreticheskaya fizika – in Russ. (Applied and Theoretical Physics), 2004, vol. 45, No. 6, pp. 154–168.
14. Marusin V.V. Obrabotka metallov – in Russ. (Metal Processing), 2004, No. 2, pp. 14–15.
15. Shchukin V.G., Marusin V.V. Novye materialy i tekhnologii v mashinostroenii – in Russ. (New Materials and Technologies in Mechanical Engineering), 2007, No. 7, pp. 161–167.
16. Crepaz G. et al. High-Frequency Induction Hardening with Controlled Capacitors-Discharge Pulse-Operation Processes. – Transactions on Industry Applications, 1986, DOI:10.1109/TIA.1986. 4504706.
17. Biasutti F., Krause C. Experimental investigation of process parameters on contour induction hardening of gears’, HES-10 Heating by Electromagnetic Sources, 201018-21 May, Padua, Italy, pp.189–199.
18. Bykovsky V.N., Aliferov A.I. Pulse Induction Surface Hardening of Steel Blanks. –The Science. Technologies. Innovations, 2019, part 5, pp. 19–22.
19. Aliferov A., Lupi S. Elektrokontaktnyy nagrev metallov (Electrocontact Heating of Metals). Novosibirsk: Izd-vo NGTU, 2004, 224 p
Published
2023-08-31
Section
Article