The Latest Progress in China's High-Temperature Superconducting Cable Industry

  • Xihua Zong
  • Weil Xie
  • Yunwu Han
Keywords: HTS cables, urban power grid, integrated energy systems

Abstract

A high-temperature superconducting cable has outstanding advantages including its small size and high capacity. These features make the use of the high-temperature superconducting cable a promising solution for upgrading urban power grids and achieving an efficient power transmission. This paper introduces several typical projects of high-temperature superconducting cables in the metallurgical and urban power transmission fields in China. The application prospects of high-temperature superconducting cables are discussed.

Author Biographies

Xihua Zong

(Shanghai Internatio-nal Superconducting Technology Co., Ltd; Shanghai Electric Cable Research Institute, Shanghai 200444, China) – General Manager; Senior Engineer, PhD, Professor.

Weil Xie

(State Grid Shanghai Municipal Electric Power Company, Shanghai 200122, China) – Chief Engineer, Professor.

Yunwu Han

(Shanghai Internatio-nal Superconducting Technology Co., Ltd, Shanghai 200444, China) – Senior Engineer.

References

1. Ross M.P., Kehrli B. Secure Super Grids. – IEEE/PES Transmission and Distribution Conference and Exposition, 2008, DOI: 10.1109/TDC.2008.4517197.
2. Zhang G.M. et al. Recent Progress of Superconducting Fault Current Limiter in China. – Superconductor Science & Technology, 2021(1):34, DOI:10.1088/1361-6668/abac1f.
3. Zhang D. et al. Testing Results for the Cable Core of a 360 m/10 kA HTS DC Power Cable Used in the Electrolytic Aluminum Industry. – IEEE Transactions on Applied Superconductivity, 2013, 23(3):5400504-5400504, DOI:10.1109/TASC.2012.2236812.
4. Zong X. et al. Development of 35 kV 2000 A CD HTS Cable Demonstration Project. – IEEE Transactions on Applied Superconductivity, 2016,6(7): 5403404, DOI: 10.1109/TASC.2016.2598490.
5. Zhang D.Y. et al. CD HTS Cable Control System and Running Situation. – IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 2015, pp. 580–582, DOI: 10.1109/ASEMD.2015.7453713.
6. Xin Y. et al. Introduction of China's First Live Grid Installed HIS Power Cable System. – IEEE Transactions on Applied Super-conductivity, 2005, DOI:10.1109/TASC.2005.849299.
7. Tang S. et al. Development and Demonstration of Concentric-Type HTS Power Cable for Distribution Grid in Shenzhen Urban. – Frontiers in Energy Efficiency, 2023, 1: 1160372, DOI:10.3389/fenef.2023.1160372.
8. Zong X.H., Han Y.W., Huang C.Q. Introduction of 35-kV Kilometer-Scale High-Temperature Superconducting Cable Demonstration Project in Shanghai. – Superconductivity, 2022, 2(3): 100008, DOI: 10.1016/j.supcon.2022.100008.
9. Xie W., Wei B., Yao Z. Introduction of 35 kV km Level Domestic Second-Generation High Temperature Superconducting Power Cable Project in Shanghai, China. – Journal of Superconductivity and Novel Magnetism, 2020, 33(7), pp. 1927–1931, DOI:10.1007/s10948-020-05508-z.
10. Rasmussen N., Spitaels J. A Quantitative Comparison of High Efficiency AC vs. DC Power Distribution for Data Centers. – White Paper 127, 2007, 21 p.
11. Tomita M. et al. Verification of Superconducting Feeder Cable in Pulse Current and Notch Operation on Railway Vehicles. – IEEE Transactions on Applied Superconductivity, 2020, 31(1), DOI:10.1109/TASC.2020.3013839.
12. Qiu Q. et al. General Design of ±100kV/1kA Energy Pipeline for Electric Power and LNG Transportation. – Cryogenics, 2020, 109(3):103120, DOI: 10.1016/j.cryogenics.2020.103120.
#
1. Ross M.P., Kehrli B. Secure Super Grids. – IEEE/PES Transmission and Distribution Conference and Exposition, 2008, DOI: 10.1109/TDC.2008.4517197.
2. Zhang G.M. et al. Recent Progress of Superconducting Fault Current Limiter in China. – Superconductor Science & Technology, 2021(1):34, DOI:10.1088/1361-6668/abac1f.
3. Zhang D. et al. Testing Results for the Cable Core of a 360 m/10 kA HTS DC Power Cable Used in the Electrolytic Aluminum Industry. – IEEE Transactions on Applied Superconductivity, 2013, 23(3):5400504-5400504, DOI:10.1109/TASC.2012.2236812.
4. Zong X. et al. Development of 35 kV 2000 A CD HTS Cable Demonstration Project. – IEEE Transactions on Applied Superconductivity, 2016,6(7): 5403404, DOI: 10.1109/TASC.2016. 2598490.
5. Zhang D.Y. et al. CD HTS Cable Control System and Running Situation. – IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 2015, pp. 580–582, DOI: 10.1109/ASEMD.2015.7453713.
6. Xin Y. et al. Introduction of China's First Live Grid Installed HIS Power Cable System. – IEEE Transactions on Applied Superconductivity, 2005, DOI:10.1109/TASC.2005.849299.
7. Tang S. et al. Development and Demonstration of Concentric-Type HTS Power Cable for Distribution Grid in Shenzhen Urban. – Frontiers in Energy Efficiency, 2023, 1: 1160372, DOI:10.3389/fenef.2023.1160372.
8. Zong X.H., Han Y.W., Huang C.Q. Introduction of 35-kV Kilometer-Scale High-Temperature Superconducting Cable Demonstration Project in Shanghai. – Superconductivity, 2022, 2(3): 100008, DOI: 10.1016/j.supcon.2022.100008.
9. Xie W., Wei B., Yao Z. Introduction of 35 kV km Level Domestic Second-Generation High Temperature Superconducting Power Cable Project in Shanghai, China. – Journal of Superconductivity and Novel Magnetism, 2020, 33(7), pp. 1927–1931, DOI:10.1007/s10948-020-05508-z.
10. Rasmussen N., Spitaels J. A Quantitative Comparison of High Efficiency AC vs. DC Power Distribution for Data Centers. – White Paper 127, 2007, 21 p.
11. Tomita M. et al. Verification of Superconducting Feeder Cable in Pulse Current and Notch Operation on Railway Vehicles. – IEEE Transactions on Applied Superconductivity, 2020, 31(1), DOI:10.1109/TASC.2020.3013839.
12. Qiu Q. et al. General Design of ±100kV/1kA Energy Pipeline for Electric Power and LNG Transportation. – Cryogenics, 2020, 109(3):103120, DOI: 10.1016/j.cryogenics.2020.103120
Published
2023-09-28
Section
Article