Investigation of Magnetic Flux Pulsations in the Aircraft Generator Having a Solid Rotor with Laminated Shroud

  • Boris S. ZECHIKHIN
  • Kirill Yu. KORENCHUK
  • Sergey V. ZHURAVLEV
Keywords: aircraft generator, solid rotor, laminated shroud, magnetic flux pulsations

Abstract

The maximum power capacity of aircraft generators is constantly increasing and reaches hundreds of kVA; their mass and dimensions grow accordingly. To reduce them, the generators are designed for maximum rotational speeds of 16000 rpm or higher. The active zones are laminated, and the solid shaft provides the minimum permissible rotor sag. The rotor and shaft diameters limit the space for placing the field windings, so the generators are made with a small operating clearance. In the case of using a laminated rotor, the rotor surface losses caused by magnetic flux pulsations are not high. Magnetic flux pulsations prevent the use of aircraft generators with a solid rotor, which has a higher mechanical strength than a laminated rotor. The use of laminated shroud made of gradient material makes it possible to reduce these pulsations, which give rise to surface losses in a solid rotor. The article presents the results obtained from studying the effect of shroud on the magnitude of magnetic flux pulsations caused by tooth harmonics and armature current higher harmonic components. The use of quite thin laminated shroud makes it possible to reduce or even eliminate these pulsations. The use of a solid rotor with laminated shroud will open the possibility to increase the generator’s maximum power capacity.

Author Biographies

Boris S. ZECHIKHIN

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Proffesor of the Electric Power, Electromechanical and Biotechnical Systems Dept., Dr. Sci. (Eng.), Professor

Kirill Yu. KORENCHUK

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Postgraduate Student of the Electric Power, Electromechanical and Biotechnical Systems Dept.

Sergey V. ZHURAVLEV

(Moscow Aviation Institute (National Research University), Moscow, Russia) – Leading Engineer of the Hybrid and Electric Power Plants" Laboratory № 2 ", Institute № 14., Cand. Sci. (Eng.)

References

1. Левин А.В. и др. Электрический самолёт: Концепция и технологии. Уфа: Уфимский государственный авиационный технический университет, 2014, 388 с.
2. ГОСТ Р 54073-2017. Системы электроснабжения самолетов и вертолетов. Общие требования и нормы качества электроэнергии. М.: Стандартинформ, 2018, 39 с.
3. Ismagilov F.R., Vavilov V.E., Gusakov D.V. Design Features of Liquid-Cooled Aviation Starter Generators. – IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference (ESARS-ITEC), 2019, DOI: 10.1109/ESARS-ITEC.2018.8607493.
4. Madonna V., Giangrande P., Galea M. Electrical Power Generation in Aircraft: Review, Challenges, and Opportunities. – IEEE Transactions on Transportation Electrification, 2018, vol. 4, No. 3, pp. 646–659, DOI: 10.1109/TTE.2018.2834142.
5. Solomon D.G. et al. A Review on Methods to Reduce Weight and to Increase Efficiency of Electric Motors Using Lightweight Materials, Novel Manufacturing Processes, Magnetic Materials and Cooling Methods. – Annales de Chimie: Science des Materiaux, 2020, 44(1), DOI: 10.18280/acsm.440101.
6. Зубков Ю.В., Иванников Ю.Н. Оценка механических напряжений ротора и электромагнитных показателей электрической машины с постоянными магнитами. – Электричество, 2023, № 5, с. 62–71.
7. Koch S.-F., Peter M., Fleischer J. Lightweight Design and Manufacturing of Composites for High-Performance Electric Motors. – 1st Cirp Conference on Composite Material Parts Manufacturing, CIRP-CCMPM, 2017, pp. 283–288, DOI:10.1016/j.procir.2017.03.274.
8. Tseng G.-M. et al. Application of Additive Manufacturing for Low Torque Ripple of 6/4 Switched Reluctance Motor. – 19th International Conference on Electrical Machines and Systems, Chiba, Japan, 2016.
9. Лисовин И.Г. и др. Обзор дополнительных технологий и процессов при электрификации авиационного двигателя. – Проблемы машиностроения и автоматизации, 2022, № 4, с. 57–70.
10. Кашин М.Я., Князев А.С., Широков А.А. Авиационные ветроэнергетические комплексы: современное состояние и перспективы развития. Краснодар: КВВАУЛ, 2021, 245 с.
11. Поспелов Л.И. Конструкции авиационных электрических машин / под ред. А.Ф. Федосеева. М.: Энергоиздат, 1982, 319 с.
12. Балагуров В.А. Проектирование специальных электрических машин переменного тока. М.: Высшая школа, 1982, 272 с.
13. Вольдек А.И. Электрические машины. Л.: Энергия, 1978, 832 с.
14. Копылов И.П. Проектирование электрических машин. М.: Энергия, 1980, 496 с.
15. Грузков С.А. Электрооборудование летательных аппаратов. Т. 1. Системы электроснабжения летательных аппаратов. М.: Изд-во МЭИ, 2005, 568 c.
16. Кузьмичев Р.В. и др. Авиационные генераторы повышенной мощности. – Вестник МАИ, 2011, т. 18, № 6, с. 39–46.
17. Зечихин Б.С., Журавлев С.В., Мисютин Р.Ю. Авиационные генераторы с постоянными магнитами. – Электричество, 2018, № 6, с.49–59.
18. Хуторецкий Г.М., Токов М.И., Толвинская Е.В. Проектирование турбогенераторов. Л.: Энергоатомиздат, 1987, 256 с.
19. Пат. RU2759181C1. Неявнополюсный и явнополюсный массивные роторы электрической машины со слоем шихтованного градиентного материала / С.В. Журавлев и др., 2021.
20. Zechihin B.S. et al. Investigation of the Mechaniсal Strength of a Magnetic*Non*Magnetic Sleeve of Permanent Magnet Generator. – ICOECS, Ufa, 2019, DOI: 10.1109/ICOECS46375.2019.8950000.
#
1. Levin А.V. et al. Elektricheskiy samolyot: Koncepciya i tekh-nologii (Electric Aircraft: Concept and Technology). Ufa: Ufimskij gosudarstvennyj aviacionnyj tekhnicheskij universitet, 2014, 388 p.
2. GОSТ R 54073-2017. Sistemy elektrosnabzheniya samoletov i vertoletov. Obshchie trebovaniya i normy kachestva elektroenergii (Electric power supply systems of airplanes and helicopters. General requirements and norms of electric energy quality). M.: Standartinform, 2018, 39 p.
3. Ismagilov F.R., Vavilov V.E., Gusakov D.V. Design Features of Liquid-Cooled Aviation Starter Generators. – IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference (ESARS-ITEC), 2019, DOI: 10.1109/ESARS-ITEC.2018.8607493.
4. Madonna V., Giangrande P., Galea M. Electrical Power Generation in Aircraft: Review, Challenges, and Opportunities. – IEEE Transactions on Transportation Electrification, 2018, vol. 4, No. 3, pp. 646–659, DOI: 10.1109/TTE.2018.2834142.
5. Solomon D.G. et al. A Review on Methods to Reduce Weight and to Increase Efficiency of Electric Motors Using Lightweight Materials, Novel Manufacturing Processes, Magnetic Materials and Cooling Methods. – Annales de Chimie: Science des Materiaux, 2020, 44(1), DOI: 10.18280/acsm.440101.
6. Zubkov Yu.V., Ivannikov Yu.N. Elektrichestvo – in Russ. (Electricity), 2023, No. 5, pp. 62–71.
7. Koch S.-F., Peter M., Fleischer J. Lightweight Design and Manufacturing of Composites for High-Performance Electric Motors. – 1st Cirp Conference on Composite Material Parts Manufacturing, CIRP-CCMPM, 2017, pp. 283–288, DOI:10.1016/j.procir.2017.03.274.
8. Tseng G.-M. et al. Application of Additive Manufacturing for Low Torque Ripple of 6/4 Switched Reluctance Motor. – 19th International Conference on Electrical Machines and Systems, Chiba, Japan, 2016.
9. Lisovin I.G. et al. Problemy mashinostroeniya i avtomatizacii – in Russ. (Problems of Mechanical Engineering and Automation), 2022, No. 4, pp. 57–70.
10. Kashin M.Ya., Knyazev A.S., Shirokov A.A. Aviacionnye vetroenergeticheskie kompleksy: sovremennoe sostoyanie i perspektivy razvitiya (Aviation Wind Power Complexes: Current State and Development Prospects). Krasnodar: KVVAUL, 2021, 245 p.
11. Pospelov L.I. Konstrukcii aviacionnyh elektricheskih mashin (Designs of Aviation Electric Machines) / Ed. by A.F. Fedoseev. M.: Energoizdat, 1982, 319 p.
12. Balagurov V.A. Proektirovanie spetsial'nyh elektricheskih mashin peremennogo toka (Design of AC Special Electric Machines). M.: Vysshaya shkola, 1982, 272 p.
13. Vol'dek A.I. Elektricheskie mashiny (Electric Machines). L.: Energiya, 1978, 832 p.
14. Kopylov I.P. Proektirovanie elektricheskih mashin (Design of Electric Machines). M.: Energiya, 1980, 496 p.
15. Gruzkov S.A. Elektrooborudovanie letatel'nyh apparatov. T. 1. Sistemy elektrosnabzheniya letatel'nyh apparatov (Electrical Equipment of Aircraft. Vol. 1. Power Supply Systems of Aircraft). M.: Izd-vo MEI, 2005, 568 p.
16. Kuz'michev R.V. et al. Vestnik MAI – in Russ. (MAI Bulletin), 2011, vol. 18, No. 6, pp. 39–46.
17. Zechihin B.S., Zhuravlev S.V., Misyutin R.Yu. Elektrichest-vo – in Russ. (Electricity), 2018, No. 6, pp.49–59.
18. Hutoreckij G.M., Tokov M.I., Tolvinskaya E.V. Proektirovanie turbogeneratorov (Design of Turbo Generators). L.: Ener-goatomizdat, 1987, 256 p.
19. Pаt. RU2759181C1. Neyavnopolyusnyj i yavnopolyusnyj massivnye rotory elektricheskoj mashiny so sloem shihtovannogo gradientnogo materiala (Implicit-Pole and Explicit-Pole Massive Rotors of an Electric Machine with a Layer of Charged Gradient Material) / S.V. Zhuravlev et al., 2021.
20. Zechihin B.S. et al. Investigation of the Mechaniсal Strength of a Magnetic*Non*Magnetic Sleeve of Permanent Magnet Generator. – ICOECS, Ufa, 2019, DOI: 10.1109/ICOECS46375.2019.8950000
Published
2023-09-28
Section
Article