Comparative Analysis of Electricity Generation by Photovoltaic Modules under Different Temperature Conditions

  • Irina M. KIRPICHNIKOVA
  • Dmitriy A. EVOK
  • Ilkhom B. MAKHSUMOV
Keywords: solar power plant, photovoltaic module overheating, reduction of electricity generation, cooling methods

Abstract

The article presents the results of a theoretical study on evaluating the efficiency of a solar power plant (SPP) when generating electricity under the conditions of high and low ambient temperatures. The photovoltaic module surface temperature, efficiency and amount of electricity generated for different climatic conditions (of the Orsk city in the Orenburg region and Yakutsk city in the Republic of Sakha (Yakutia) are calculated. The power and volt-ampere characteristics of the modules for the conditions considered are plotted. The calculation results have shown that the operation of photovoltaic modules in winter or at low temperatures is significantly more efficient due to a high output voltage and, accordingly, the power and electricity generated. A conclusion has been drawn that the use of SPP in the northern regions is reasonable, because the lower power of solar radiation is compensated by low temperatures, which has a favorable effect on the SPP operation. The need to protect and cool the photovoltaic modules for increasing their efficiency and service life is substantiated. Some versions of devices and methods to protect the module surface against overheating are proposed, which make it possible to reduce energy losses and increase the performance efficiency of solar power plants.

Author Biographies

Irina M. KIRPICHNIKOVA

(South Ural State University (National Research University), Chelyabinsk, Russia) – Professor of the Power Plants, Networks and Power Supply Systems Dept., Dr. Sci. (Eng.)

Dmitriy A. EVOK

(South Ural State University (National Research University), Chelyabinsk, Russia) – Postgraduate Student of the Power Plants, Networks and Power Supply Systems Dept

Ilkhom B. MAKHSUMOV

(Institute of Energy Tajikistan Bokhtar, Tajikistan) – Head of the Alternative Energy Sources Dept., Cand. Sci. (Eng.)

References

1. Артюшевская Е.Ю. Анализ потенциала альтернативных источников энергии в Республике Саха (Якутия). – Вестник АмГУ, 2021, № 93, с. 72–75.
2. Васильева Е.Н. Возобновляемые источники энергии на севере республики Саха (Якутия). – NovaInfo. Ru, 2021, № 126, с. 14–15.
3. Иванова И.Ю. и др. Оценка экономической эффективности использования солнечного излучения для энергоснабжения в Арктической зоне Якутии. – Успехи современного естествознания, 2020, № 7, с. 118–125.
4. Кирпичникова И.М. Особенности работы солнечных энергоустановок в полярном климате. – Энергобезопасность и энергосбережение, 2022, № 5, с. 32–36.
5. Kabir E. et al. Solar Energy: Potential and Future Prospects. – Renewable and Sustainable Energy Reviews, 2017, 82(74), pp. 894–900, DOI: 10.1016/j.rser.2017.09.094.
6. Ерофеев А.С., Шишкин И.А., Латухина Н.В. Деградация солнечных элементов на базе пористого кремния. – Вестник молодых ученых и специалистов Самарского университета, 2020, № 1 (16), с. 267–272.
7. Моисеенко О.П., Казначеев А.Е. Тенденция развития возобновляемой энергетики в России. –Молодежь и научно-технический прогресс, 2019, с. 90–93.
8. Худяков Е.А., Мамонов Р.В. Альтернативные источники энергии. Гелиостанции: реалии, проблемы и перспективы. – Актуальные вопросы энергетики, 2020, с. 213–215.
9. Хондошко Ю.В., Воробьев А.А. Технологически изолированные энергосистемы России. – Вестник АмГУ, 2023, № 101, с. 88–91.
10. Макаров С.В. Развитие ВИЭ на базе солнечных электростанций на территории современной России. – Научный электронный журнал Меридиан, 2020, № 15(49), с. 195–197.
11. Солнечные батареи Хевел [Электрон. ресурс], URL: https://mywatt.ru/solnechnie_batarei/hevelsolar/ (дата обращения 09.10.2023).
12. Hassanian R., Riedel M., Yeganeh N. A Review in Context to Wind Effect on NOCT Model for Photovoltaic Panel. – Peer Rev J Sol Photoen Sys., 2022, 2(1). PRSP. 000528.
13. Портал Climate-Energy.ru [Электрон. ресурс], URL: https://climate-energy.ru (дата обращения 09.10.2023).
14. Левшов А.В., Фёдоров А.Ю., Молодиченко А.В. Математическое моделирование фотоэлектрических солнечных элементов. – Научные труды Донецкого национального технического университета. Серия: электротехника и энергетика, 2011, № 11(186), с. 246–249.
15. Kirpichnikova I., Chirov D. Investigation of the Influence of Elevated Ambient Temperatures on the Operation of Photovoltaic Modules. – International Conference on Industrial Engineering, Applications and Manufacturing, 2022, pp. 214–219, DOI: 10.1109/ICIEAM54945.2022.9787180.
16. Gopi A. et al. Weather Impact on Solar Farm Performance: a Comparative Analysis of Machine Learning Techniques. – Sustainability, 2023, 15(1):439, DOI: 10.3390/su15010439.
17. Чиров Д.А., Самсонов В.С. Охлаждение солнечных батарей на базе эффекта Пельтье. – Приоритетные направления инновационной деятельности в промышленности: сборник научных статей, 2021, часть 1, с. 112–114.
18. Shepovalova O. et al. Assessment of the Gross, Technical and Economic Potential of Region’s Solar Energy for Photovoltaic. – Energetics, 2023, vol. 16, 1262, DOI:10.3390/en16031262.
19. Kirpichnikova I.M., Makhsumov I.B. Investigation of Surface Temperature of Solar Modules Using Holographic Overheating Protection. – IEEE Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice, 2019, pp. 80–84, DOI:10.1109/PEAMI.2019.8915414.
20. Rylov A.V. et al. Testing Photovoltaic Power Plants for Participation in General Primary Frequency Control under Various Topology and Operating Conditions. – Energies, 2021, vol. 14(16), 5179, DOI: 10.3390/en14165179.
21. Шохзода Б.Т., Тягунов М.Г. Оценка влияния рабочей температуры поверхности фотоэлектрического модуля с голографическим концентратором на эффективность его работы. – Вестник МЭИ, 2019, № 4, с. 50–59.
#
1. Artyushevskaya Е.Yu. Vestnik AmGU – in Russ. (Bulletin of the AmSU), 2021, No. 93, pp. 72–75.
2. Vasil'eva Е.N. NovaInfo. Ru, 2021, No. 126, pp. 14–15.
3. Ivanova I.Yu. et al. Uspekhi sovremennogo estestvoznaniya – in Russ. (Successes of Modern Natural Science), 2020, No. 7, pp. 118–125.
4. Kirpichnikova I.М. Energobezopasnost' i energosberezhenie –in Russ. (Energy Security and Energy Conservation), 2022, No. 5, pp. 32–36.
5. Kabir E. et al. Solar Energy: Potential and Future Prospects. – Renewable and Sustainable Energy Reviews, 2017, 82(74), pp. 894–900, DOI: 10.1016/j.rser.2017.09.094.
6. Erofeev A.S., Shishkin I.A., Latuhina N.V. Vestnik molodyh uchenyh i specialistov Samarskogo universiteta – in Russ. (Bulletin of Young Scientists and Specialists of Samara University), 2020, No. 1 (16), pp. 267–272.
7. Moiseenko O.P., Kaznacheev А.Е. Molodezh' i nauchno-tekhnicheskij progress – in Russ. (Youth and Scientific and Technological Progress), 2019, pp. 90–93.
8. Hudyakov E.A., Mamonov R.V. Aktual'nye voprosy energetiki – in Russ. (Current Issues of Power Engineering), 2020, pp. 213–215.
9. Hondoshko Yu.V., Vorob'ev А.А. Vestnik AmGU – in Russ. (Bulletin of the AmSU), 2023, No. 101, pp. 88–91.
10. Makarov S.V. Nauchnyj elektronnyj zhurnal Meridian – in Russ. (Scientific Electronic Journal Meridian), 2020, No. 15(49), pp. 195–197.
11. Solnechnye batarei Hevel (Hevel Solar Panels) [Electron. resource], URL: https://mywatt.ru/solnechnie_batarei/hevelsolar/ (Date of appeal 09.10.2023).
12. Hassanian R., Riedel M., Yeganeh N. A Review in Context to Wind Effect on NOCT Model for Photovoltaic Panel. – Peer Rev J Sol Photoen Sys., 2022, 2(1). PRSP. 000528.
13. Portal Climate-Energy.ru [Electron. resource], URL: https://climate-energy.ru (Date of appeal 09.10.2023).
14. Levshov A.V., Fyodorov A.Yu., Molodichenko А.V. Nauchnye trudy Doneckogo nacional'nogo tekhnicheskogo universiteta. Seriya: elektrotekhnika i energetika – in Russ. (Scientific Works of Donetsk National Technical University. Series: Electrical Engineering and Power Engineering), 2011, No. 11(186), pp. 246–249.
15. Kirpichnikova I., Chirov D. Investigation of the Influence of Elevated Ambient Temperatures on the Operation of Photovoltaic Modules. – International Conference on Industrial Engineering, Applications and Manufacturing, 2022, pp. 214–219, DOI: 10.1109/ICIEAM54945.2022.9787180.
16. Gopi A. et al. Weather Impact on Solar Farm Performance: a Comparative Analysis of Machine Learning Techniques. – Sustainability, 2023, 15(1):439, DOI: 10.3390/su15010439.
17. Chirov D.A., Samsonov V.S. Prioritetnye napravleniya innovacionnoy deyatel'nosti v promyshlennosti: sbornik nauchnyh statey – in Russ. (Priority Directions of Innovation Activity in Industry: Collection of Scientific Articles), 2021, part 1, pp. 112–114.
18. Shepovalova O. et al. Assessment of the Gross, Technical and Economic Potential of Region’s Solar Energy for Photovoltaic. – Energetics, 2023, vol. 16, 1262, DOI:10.3390/en16031262.
19. Kirpichnikova I.M., Makhsumov I.B. Investigation of Surface Temperature of Solar Modules Using Holographic Overheating Protection. – IEEE Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice, 2019, pp. 80–84, DOI:10.1109/PEAMI.2019.8915414.
20. Rylov A.V. et al. Testing Photovoltaic Power Plants for Participation in General Primary Frequency Control under Various Topology and Operating Conditions. – Energies, 2021, vol. 14(16), 5179, DOI: 10.3390/en14165179.
21. Shohzoda B.T., Tyagunov М.G. Vestnik MEI – in Russ. (Bulletin of the MPEI), 2019, No. 4, pp. 50–59
Published
2023-10-19
Section
Article